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Introduction

Throughout the history of mathematics there has been a rich interplay between synthetic
and analytic methods. With synthetic, which could also be called axiomatic, we mean that
the objects of interests and the relations between them are postulated and manipulated
directly. This method goes back to Euclid’s elements which served as a gold standard for
mathematical reasoning until deep into the middle ages. The analytic methods in contrast
try to understand objects through their instantiations, or models, in existing structures.

In the case of geometry it was Decartes that instantiated Euclid’s geometric shapes in the
real (Cartesian) plane. This model provided a link between geometric and algebraic meth-
ods which allowed later mathematicians, such as Gauß to provide solutions to geomet-
ric problems which puzzled geometers for centuries. Analytical thinking perhaps found
it’s apex in the beginning of the 20th century mathematics when all mathematical theo-
ries were understood through their incarnations in Cantor’s set theory. This program was
hugely successful by connecting all of mathematics and providing rich opportunities of
cross pollination between mathematical fields. In the words of Hilbert:

Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben kön-
nen. (From the paradise, that Cantor created for us, no-one shall be able to expel
us.)

But the analytic method comes with it’s own set of challenges. Particularly the models of
objects in some ambient theory often carry spurious structure not essential to the objects
studied. For example familiar mathematical objects such as topological spaces, manifolds,
and vector spaces where orginally based on certain properties of cartesian spaces Rn. Now
when we represent a vector space by some cartesian Rn it comes with an preferred ba-
sis which allows us to make statements which are not essentially about vector spaces but
particular for this representation. The situation with summed up by Norton [Nor93]:

Our modern difficulty in reading Einstein literally actually stems from a change
[..] in the mathematical tools used [..]. In recent work [..] we begin with a very
refined mathematical entity, an abstract differentiable manifold [..]. We then
judiciously add further geometric objects only as the physical content of the
theory warrants [..]. In the 1910s, mathematical practices in physics were dif-
ferent. [One] used number manifolds Rn or Cn for example. Thus Minkowski’s
‘world’ [..] was literally R4, that is it was the set of all quadruples of real num-
bers. Now anyone seeking to build a spacetime theory with these mathematical
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tools of the 1910s faces very different problems from the ones we see now. Mod-
ern differentiable manifolds have too little structure and we must add to them.
Number manifolds have far too much structure [..] the origin (0, 0, 0, 0) is quite
different from any other point, for example [..]. The problem was not how to
add structure to the manifolds, but how to deny physical significance to exist-
ing parts of the number manifolds. How do we rule out the idea that (0, 0, 0, 0)
represents the preferred center of the universe?

An essential tool for dealing with spurious structure is to associate to a model of a math-
ematical object an group of symmetries which capture the intended invariant symmetries.
This means that any statement we make about the model of an mathematical object must be
invariant under the group action. Felix Klein formulated this idea in his Erlangen program:

Given a manifold and a transformation group acting on it, to investigate those
properties of figures on that manifold which are invariant under [all] transfor-
mations of that group.

Cantors paradise provided the backdrop for the next spur in synthetic methods under the
name of universal algebra. Various properties of the cartesian theater where abstracted
away to produce mathematical objects such as topological spaces, manifolds, vector spaces
and so on. All these objects instantiated in the lingua franca of sets. This painted a new
kind of picture of mathematics, with all these kinds of objects having equal ontological
status in the pantheon of set theory.

In fact the set theoretical framework serves only to legitimize these mathematical objects,
since exploiting their particular encodings would be tantamount to using spurious struc-
ture. This observation provides the foundation for structuralist thinking, which states that
the only legitemate way to study mathematical objects is in a context. For example the
same set {∅, {∅}} might encode both an Von Neumann natural number 2 and a topology
on {∅}, so without a supplied context we should assign it no meaning.

Category theory, the subject of part I of this thesis, provides a very powerful and elegant
way to think structurally. Especially striking is that category theory does not set theoretic
origins but instead reaffirms the central role of sets. Category theory unifies, clarifies and
organizes a great deal of modern mathematics. There are still some difficulties with this
paradigm, such as the irregular behaviour of some colimits as highlighted in the chapter
on topoi.

We now wish to make the following, somewhat speculative, suggestion. The identifica-
tion of the Cartesian plane in the 17th century was pivotal for the development of much
of mathematics in the centuries to come. To be precise cartesian lines, planes and volumes
served as the backdrop in which mathematical objects could be analytically understood
and studied. The 19th-20th century identification of sets transported us from a cartesian
theater to cantors paradise in which the lines and planes naturally find their place in a
grander framework. In the process more mathematical objects could be analytically stud-
ied and compared in an holistic framework. We now suggest that we are on the cusp of the
next ontological jump in mathematics replacing sets with ∞-groupoids or homotopy types
of spaces. What exactly these objects are we will see at the end of this thesis but for now it
will be enough to say that they enable the study of objects with higher symmetries.
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Whether the reader wishes to indulge in the above speculation or not, the fact remains
that the development of the theory of ∞-groupoids presents considerable difficulties in
set theoretic frameworks. In fact to do this we start with topological spaces, which we
speculatively assume to be models for these new kinds of objects, and then carefully work
to forget the spurious information carried by this topological encoding. This project goes
by the name of homotopical mathematics and is the focus of part II of this thesis.

The study of objects based in ∞-groupoids goes by the name of ∞-category theory. In a
set theoretic framework these object can again only be understood through models. With
the development of models and aspects of the theory by Joyal and Lurie these objects have
been understood for just a few decades. Homotopy type theory, originally meant to be the
final part of this thesis, is hypothesized to be an synthetic description of these objects. With
the recent work of Shulman [Shu19] an important piece of this picture is filled in. One can
thus hope that the tandem arrival of homotopical mathematics as model and homotopy
type theory as language for these objects might spur an ontological shift similar to those
produced by the cartesian theater and cantors paradise.
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Part I

Category theory
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The goal of part I is two fold, one is to lay the foundations for discussing homotopical
mathematics later in part II, and the second is to build up to the theory of topoi in the last
chapter of part I.

For this we first introduce the notion of category in chapter 1. This chapter begins with
the introduction highlighting some of the conceptual essence of category theory. This
mostly consists of rephrasing familier concepts in this new framework. Then we move
on to representables and the Yoneda lemma which showcase the novel perspectives cat-
egorical thinking has to offer. Then in the next sections we highlight this by making the
necessary constructions needed for in the rest of this thesis using this language.

The theme of chapter 2 is the identification and manipulation of subcategories. In the first
section we meet the exceedingly important notion of a reflective subcategory. Reflective
subcategories represent an ideal kind of subcategory with a strong relation to the category
they are contained in. We will see that restriction to a reflective subcategory corresponds
to adding inverses to some morphisms. This process of inverting morphisms is called
localization and it allows us to treat some morphisms as isomorphisms. Unfortunately
localization at a collection of morphisms does not always yield a reflective subcategory, we
nevertheless wish to find tools to approximate this operation. Finding a context to do that
is essentially the topic of part II. A necessary tool for working with localizations are the
decomposition and factorization systems introduced in the last section of chapter 2.

The goal of the last chapter is to give an introduction to topos theory. To a first approxima-
tion a topos can be considered a category which behaves like the category of sets, meaning
that many constructions in set translate to any topos. Categories that stand very close to
sets are the presheaf categories which we will define first. Before continuing with topos the-
ory we then define the technique of extension by colimit in 3.1, the last technical result we
need for part II. Before characterizing topoi we spent section 3.2 introducing presentable
categories. These provide a categorical way to deal with size issues and have some very
pleasing properties. Finally we then introduce the classical notion of a topos in section 3.3.
Topoi are space like objects, so by the fundamental duality between space and algebra we
expect to characterize them by an algebraic object. Indeed logoi as introduced by Joyal and
Anel [AJ19] capture the algebraic properties of topoi. It is then precisely the restriction to
presentable logoi that are dual to topoi.
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Chapter 1

Categories

1.1 Introduction to categories

1.1. A categorycategory C consists of a collection Obj(C) of objects X, Y, Z and a collection Mor(C)
of morphisms f , g, h, such that

• Each morphism has specified domain and codomain objects; the notation f : X → Y
indicates that X is the domain of f and Y is the codomain, i.e. f is an morphism from
X to Y.

• Two morphisms f and g of C are composable if the domain of g is the codomain of
f . In this case there is an morphism g ◦ f or just g f called the composite of g and f .
This composition operation ◦ is moreover associative. Concretely, given f : X → Y,
g : Y → Z, h : Z → Z′ we have g f : X → Z and (hg) f = h(g f ).

• Each object has a designated identity morphism written idX : X → X or sometimes
just id. For any morphism f : X → Y the appropriate (i.e. composable) idY and idX
serve as left and right unit, i.e. idY f = f and f idX = f .

1.2. When we use the word ‘collection’ above we have a set in mind. The reason for using
the vague term ‘collection’ is for essentially two different reasons.

1. The first of those is related to size: if we take a set theoretical framework like ZFC
then for many categories there will be a proper class of objects/morphisms. When the
classes of morphisms and objects of a category C are sets the category C is said to be

small categorysmall. Note that for every object in category there is at least one morphism, namely
the identity morphism, so an category is already small if its class of morphisms is
small.

2. The second is a subtle but central point; any set comes pre-equipped with the equiva-
lence relation of set theoretical equality on its members. We wish to deemphasize this
equality. The reasons for this are: 1) remembering equality would lead to a natural
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notion of equivalence of categories based on a bijection between objects and mor-
phisms, but this notion is too strong in practice, see 1.28; and 2) the morphisms of a
category already induce an equivalence relation on its set of objects which will be the
right notion of equality between objects, see 1.5.

1.3. For a pair of objects X and Y of a category C the hom classhom class, written HomC(X, Y) or just
Hom(X, Y), is the class of morphisms from X to Y, i.e. HomC(X, Y) := { f ∈ Mor(C) | f :
X → Y}. Many categories that fail to be small can still be locally smalllocally small in the sense that for
each X, Y ∈ C the class Hom(X, Y) is a set which we then call hom sethom set.

1.4. Categories deserve their name for organizing
categories

organizing mathematical objects of study. When
looking at introductory texts one often encounters that immediately after the introduction
of the objects of study (e.g. groups, topological spaces, rings) the relevant notion of struc-
ture preserving map between them is given (e.g. group homomorphism, continuous map,
ring homomorphism). This is very much in the spirit of category theory and by the above
definition we can collect such objects into a relevant category of which we will now give
some examples. The following are examples of categories:

(i) The category Set consisting of sets and functions between them.

(ii) The category Grp consists of groups and group homomorphisms.

(iii) The category Top consists of topological spaces and continuous maps.

In general, whenever we have some (essentially) algebraic theory we can consider the cat-
egory of its models.

1.5. Arguably the reason for adding identities to the definition of a category is in order
to state the following definition. A morphism in a category f : X → Y is said to be an

isomorphismisomorphism if there is an morphism g : Y → X such that f g = idY and g f = idX . In this
case the morphism g is unique and will be written f−1. Two objects X and Y are said to be

isomorphicisomorphic written X ∼= Y if there is an isomorphism between them.

The relation of isomorphism between objects is an equivalence relation. Indeed we have
X ∼= X by idX and if f : X → Y and g : Y → X are equivalences, then so is g f with inverse
(g f )−1 = f−1g−1. The notion of equivalence in a category C will serve as the notion of
‘equivalence’ on the collection Obj(C) of its objects. This will be made precise in section 5.2.

1.6. We would like to extend the above definition of isomorphism to the following princi-
ple. In general we will abstain from using the notion of equality of mathematical objects
and instead will prefer to define them in the context of a category. Then isomorphism
in the category becomes the right notion of equivalence between objects. The reason for
adhering to this principle is that mathematicians have often found it useful to treat math-
ematical objects such as the ones mentioned in 1.4 as the identical if they are isomorphic.
If we refrain from referring to equality of objects then our statement are automatically in-
variant under the implicit quotient we take when we treat isomorphic objects as identical.
Of course in current foundations the set theoretical equality relation will always be present
making it easy to slip up and or making definitions awkward to phrase. The language of
homotopy type theory aims to be a language for which all statements are always invariant
under equivalence.
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The above principle has important repercussions if the morphisms of a certain category are
part of category themselves. In this case we should not be allowed to talk about equality
of morphism, instead we should talk about morphisms being isomorphic. The category of
categories Cat, which we will see soon, is such a category.

1.7. Apart from the organizing categories from 1.4 we met before it is also possible to
define abstract

categories
abstract categories which are defined by directly specifying a set of objects and a

set of morphism. Abstract categories show that many familiar mathematical objects can be
encoded in the formalism of category theory:

(i) Any monoid M is category with a single object {∗}, such that Hom(∗, ∗) = M such
that the composition is the monoid action. Conversely for any category C with object
X ∈ C the set of Hom(X, X) is a monoid.

(ii) A groupoid is a category in which all morphisms are isomorphisms. Conversely any
category C has a corecore groupoid Core(C) which has the same objects and all isomor-
phisms of C.

(iii) A group is a monoid which is also a groupoid. Conversely we can consider for a
category C with object X ∈ C the the automorphism

group
automorphism group Aut(X) of isomorphisms

in Hom(X, X), this is a group under composition with idX as unit.

(iv) Any poset is a strict category such that every hom set is either the empty or the set
with one element.

(v) Every ordinal is a category. An ordinal is a well ordered set and so in particular a
poset and hence a category by (iv). For each n ≥ 0 write [n] for the linear order with
n + 1 elements. We write the elements of [n] := {0, 1, ..., n} where the order relation
is the obvious one. Also write [−1] = ∅ for the empty linear order.

(vi) For each cardinal κ there is a category Disc(κ) with κ objects and only identity mor-
phisms.

Another supply of abstract categories can be obtained by sketching a directed graph and
completing it into a category in a canonical way. For example we may draw a graph miss-
ing only the identity arrows. Or we might draw a graph and freely add all identities and
compositions to obtain a category.

1.8. Note that the definition of a category is itself also an (essentially) algebraic definition1,
so there is a notion of a structure preserving map between categories. Such maps are called
functors, see below. With this observation we an expand the list of organizing categories
1.4 with.

(iv) The category Cat consisting of categories and functors.

1.9. A functorfunctor F between a categories C and D consists of

• a function F0 : Obj(C)→ Obj(D) also written F; and

• a function F1 : Mor(C)→Mor(D), also written F

1In the technical sense of[Adá+94, 3.D]
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such that for a morphism f : A→ B we have F( f ) : F(A)→ F(B) preserving composition
and identities:

(i) for any composable pair f and g we have F(g f ) = F(g)F( f )

(ii) for any X ∈ C we have F(idX) = idF(X)

Any functor F sends isomorphisms to isomorphisms. This means in particular that the
object part of F respects the isomorphism relation on the collection of objects.

1.10. With the definition of a functor we might be tempted to ask when two categories C
and D are equivalent. An equivalence would be a pair F : C→ D and G : D→ C such that
GF = idC and FG = idD, but this requires us to talk about equivalence of functors. The
principle of equivalence 1.6 implies that we can do this once we know what the category
of functors is.

For each pair C and D of categories there is a category Fun(C,D) of functors between C
and D. The morphisms between functors are called natural transformations which we
introduce now:

1.11. Given two functors F, G : C → D, a natural
transformation

natural transformation α is given by: for each
object c ∈ C a component morphism αc : F(c) → G(c) in D such that, for any f : c → d in
C there is a commutative square as displayed below left.

F(c) G(c)

F(d) G(d)

F( f )

αc

G( f )

αd

F(c) G(c) H(c)

F(d) G(d) H(d)

F( f )

αc

(βα)c

G( f )

βc

H( f )

αd

(βα)d

βd

Given two composable natural transformations α and β we can obtain a composite by com-
posing the components as displayed above right. With this we obtain, for each pair of
categories C and D, a category Fun(C,D) of functors and natural transformations between
them. The identity natural transformation idF of a functor F has the identity on F(c) for
each of it’s components, i.e. (idF)c = idF(c) : F(c)→ F(c).

1.12. In line with observation 1.4 that categories often organize models of (essentially)
algebraic theories the definition of a natural transformation can be motivated as follows.
The domain category C will serve as an algebraic theory in which every object c ∈ C is a
sort and the morphisms of C are function symbols. Then two functors F, G : C → D are
thought of as models of C in the category D. The definition of a natural transformation
below is essentially that of a structure preserving map between C structures.

1.13. For any category C there is the dual of a
category

dual category Cop such that Obj(Cop) = Obj(C) and

Mor(Cop) :=
{

f op : B→ A | f : A→ B in C
}

.

Informally the category Cop is obtained by reversing the arrows of C. That Cop is even a
category is due to the fact that the rules of a category 1.1 are self dual. The usefulness of
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duality is that each categorical construction or theorem can yield dual notions by passing
to dual categories. Often the dual concept is signified by the prefix co-.

1.14. An functor F : C→ D is said to be

(i) Surjective if it surjective on objects. This is often weakened to essentially surjective
which means surjective on isomorphism classes. So for any d ∈ D there is an c ∈ D
such that F(c) ∼= d.

(ii) Full if F : Hom(A, B)→ Hom(F(A), F(B)) is surjective for each A, B ∈ C.

(iii) Faithful if F : Hom(A, B)→ Hom(F(A), F(B)) is injective for each A, B ∈ C.

An subcategorysubcategory of C is an category C′ such that some of the objects and morphisms of
C belong to C′. Any subcategory comes with an inclusion functor i : C′ → C. A full
subcategory is a subcategory such that the inclusion functor i is full and faithful. This
means that if A and B are included in C′ then all morphisms f : A→ B of C are also in C′

1.2 Representables, Yoneda and universal properties

Great utility comes from the fact that Set is itself a category while categories (and in par-
ticular their hom sets) are defined in terms of Set. When a category C is locally small we
can study its properties by considering the sets Hom(X, Y) sitting in Set the category of
sets. The way the collection of the hom sets Hom(X, Y) relate to the original category C is
detailed by the Yoneda lemma which we will study in 1.22 and 3. The category of sets is
a very nice category in the sense that many constructions can be performed there. Instead
of doing a construction in a category C we can instead work with its representation in Set

where the construction will most likely make sense.

In this way many questions about our category can be answered. We have the following
tools for relating questions about C to questions about Set:

1. The relation between a category and its hom sets in Set is explained by the fabled
Yoneda lemma.

2. If a construction in Set on the hom sets descends down to C we call that construction
representable.

3. Finally the adjoint functor theorem will give us a way of deciding when constructions
are representable.

1.15 (Representables). Consider the hom sets Hom(A, B). Fixing the second argument
gives an assignment A 7→ Hom(A, B), written Hom(−, B), from the objects of C to Set.
Furthermore, given a map f : A′ → A we can precompose any morphism f : A → B
to obtain a morphism g f : A′ → B. Stated in terms of hom sets, this gives a function
f ∗ : Hom(A, B) → Hom(A′, B). This makes Hom(−, B) into a functor Cop → Set. Simi-
larly we can fix the first argument to obtain a functor Hom(A,−) : C → Set, morphisms
f : B→ B′ are then sent to the postcomposition map f∗ : Hom(A, B)→ Hom(A, B′).

12



A contravariant functor F natural isomorphic to Hom(−, B) is called a representable
functor

representable func-
tor and B is said to represent F. Dually, covariant functors F naturally isomorphic to
Hom(A,−) are called corepresentable functors although we will also call them repre-
sentable.

1.16. Many categories have interesting (co)representable functors. Examples include

• The contravariant functor Top → Set sending a topological space X to the set of con-
tinuous real valued functions on X is representable. Indeed this functor is equivalent
to Hom(X, R) and so is represented by R.

• The powerset functor P : Setop → Set sending a set to its set of subsets is repre-
sentable. Fixing a set X the subsets A ⊂ X are in bijection with functions χA : X →
{0, 1} such that the preimage of {1} is A. So the powerset functor is represented by
Hom(−, {0, 1}).

• Given a set (or a topological space) A we can recover the elements of the set (points
of the topological space) by looking at Hom(1, A). So the functor assigning to a set its
elements (topological space it’s points) is representable by Hom(1,−).

• The functors sending a category C to its set of objects Obj(C)/set of morphisms Mor(C)
are (co)representable by Fun([0],C) and Fun([1],C).

1.17. Representability is partly useful because it makes defining functors very easy. Com-
pare the normal definition of a functor: assign to each object a set, define the action of
morphisms, and finally verify the functor laws; with just picking an object from which
functionality automatically follows.

1.18. A morphism f : A→ B in a category C is an

(i) epimorphismepimorphism if precomposition f ∗ : Hom(B, X) → Hom(A, X) is an injection for all
X ∈ C.

(ii) monomor-
phism

monomorphism if postcomposition f∗ : Hom(X, A) → Hom(X, B) is an injection for
all X ∈ C.

1.19. The assignment B 7→ Hom(−, B) sends each object of the category C to a func-
tor Cop → Set. We saw in 1.9 that the collection of such functors is itself a category
Fun(Cop, Set). It is then natural to ask whether the assignment above lifts to a functor
y : C → Fun(Cop, Set) such that yB = Hom(−, B). This is indeed the case: a morphism
f : B → B′ yields a natural transformation f∗ : Hom(−, B) → Hom(−, B′) where the com-
ponent ( f∗)A : Hom(A, B) → Hom(A, B′) is given by postcomposition with f . Note that
the essential image of the functor y is the category of representables.

1.20. We defined earlier that a functor F is representable if it is naturally isomorphic to yB.
In other words, F is representable by B precisely when there are isomorphisms Hom(A, B)→
F(A) natural in A. To determine when a functor F is representable we would first have to
decide if there is even a natural transformation θ : yB→ F. The following characterizes all
such natural transformations.

1.21. Let us examine, for an arbitrary F and B, all possible morphisms θA : Hom(A, B) →
F(A) natural in A. Suppose we had such a natural transformation and for a particular A
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we knew that the map f ∈ Hom(A, B) is sent to θA( f ) = x ∈ F(A) (displayed below right).
For any other map g′ ∈ Hom(A′, B) that factors through f as g′ = g f , the naturality of θ
makes the right hand diagram commute

A B

A′

f

g
g′

f x

Hom(A, B) F(A)

Hom(A′, B) F(A′)

g′ F(g)(x)

∈ 3

g∗

θA

F(g)
θA′

∈ 3

and so θA′(g′) = F(g)(x). In other words fixing the assignment f 7→ θ( f ) already deter-
mines how θ will act on all maps factoring through f . But all maps f into B factor through
the identity idB ∈ Hom(B, B) simply as f = f idB, we must therefore conclude that such
natural transformations yB → F are wholly determined by the value of θB(idB), i.e. an el-
ement of F(B). Conversely for any x ∈ F(A) we get a natural transformation θx generated
by sending idB 7→ x. We conclude

1.22. Yoneda lemmaLet C be a category, then for an object B and functor F : Cop → Set the natural transforma-
tions from yB to F, i.e. the set Nat(yB, F) is in natural bijection with F(B).

1.23. An important corollary of the Yoneda lemma is that the functor y is fully faithful.
This makes the functor y into an embedding called the Yoneda

embedding
Yoneda embedding. This is easily

seen by setting F = yA for each A ∈ C. The Yoneda lemma then states that Nat(yB, yA) =
yA(B) = Hom(B, A) for each A and B in C.

1.24. An object T in a category is terminal objectterminal if there is precisely one morphism between any
object X and T, i.e. every hom set Hom(X, T) has one element. Equivalently this means
that T represents the functor Cop → Set sending X 7→ {∗} to the one element set (then
f 7→ id{∗}). There is a dual notion of an initial objectinitial object which represents the same, but now
covariant, functor.

1.25. Suppose that the functor F : Cop → Set is represented by an object C ∈ C then there
is a natural isomorphism θ : Hom(−, C) ∼= F(−). By the Yoneda lemma such a natural
transformation corresponds to an element x ∈ F(C) which is the image x = θ(idc). This
has a converse such that representable objects C for a functor F correspond bijectively with
natural isomorphisms yC ⇒ F. An object C ∈ C has a universalityuniversal property if it represents a
functor F : Cop → Set, the choice of object x ∈ F(C) then specifies a universal element.

1.26. For any functor F : Cop → Set we can define the simple
Grothendieck
construction

simple Grothendieck construction∫
C∈C F(C) to be the category with

(i) As objects it has pair (C, x) with C ∈ C and x ∈ F(C)

(ii) An morphism between (C, x) and (D, y) is a map f : C → D such that F( f ) : y 7→ x.

(iii) Identities and composition are simply those from C

This category comes with a canonical functor
∫
C F(−)→ C sending (C, x) 7→ C.
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1.27. Let F be a functor, then C is an universal object with universal element x if and only if (C, x)
is terminal in the category of elements

∫
C∈C F(C)

Proof. By the Yoneda lemma an universal pair (C, x) correspond to an natural isomorphism
θ : Hom(−, C) ⇒ F(−) such that θC : idC 7→ x. Now suppose that (D, y) ∈

∫
F then we

find an unique fy = θ−1(y) and this satisfies F( fy)(x) = (F( fy) ◦ θC)(idC) = θD( fy) = y.

Conversely if (C, x) is terminal in
∫

F then let θ : Hom(−, C) → F(−) be the natural trans-
formation induced by x from the Yoneda lemma. Then for any other (D, y) there is pre-
cisely one fy such that F( fy) : x 7→ y. But as we let y vary over F(D) this shows that we
get that the component θD : Hom(D, C) ∼= F(D) is an bijection. But then θ is an natural
transformation

1.3 Categorical constructions

1.28. An equivalence of
categories

equivalence of categories between C and D is given by functors F : C D : G
with natural isomorphisms η : 1C ∼= GF and the ε : FG ∼= 1D. Two categories are said to be
equivalent if there is an equivalence between them.

1.29. The natural transformations η and ε can satisfy the following coherence conditions.
These conditions are called the triangle laws and make sense for any pair of functors
F : C D : G with η : 1C ⇒ GF with ε : FG ⇒ 1D. The pair η and ε is said to satisfy
the triangle lawstriangle laws if Gε ◦ ηG = idG and εF ◦ Fη = idF, i.e for each c ∈ C and d ∈ D the
following triangle’s commute

Fc

FGFc Fc

idFcF(ηc)

εFc

Gd GFGd

Gd
idGd

ηGd

Gεd (1.1)

Then the functor F is left adjointleft adjoint to G or G is right adjoint to F. Together they form an
adjoint pair of
functors

adjoint pair of functors or adjunction written F a G. The natural transformation η is
called the unit of the adjunction and ε is the counit of the adjunction.

1.30. When an equivalence of categories is also an adjunction it is called an adjoint
equivalence

adjoint equiv-
alence. It is possible to improve an equivalence into an adjoint equivalence by modifying
ε to ε′ = ε ◦ F(η−1) ◦ FG(ε−1) i.e. for each d ∈ D

FGFGd FGd

FGd d

Fη−1
Gd

εd

ε′d

FGε−1
d
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This ensures that the laws 1.1 hold. Indeed for one of the laws (the other is similiar) we
have, using the naturality of ηGd:

Gε′Gd ◦ ηGd = G(εd) ◦ GF(η−1
Gd ) ◦ GFG(ε−1

d ) ◦ ηGd

= G(εd) ◦ GF(η−1
Gd ) ◦ ηGFGd ◦ G(ε−1

d )

= G(εd) ◦ ηGd ◦ η−1
Gd ◦ G(ε−1

d )

= G(εd) ◦ G(ε−1
d )

= G(idD) = idGd

1.31. The data of an adjoint pair F a G can be packaged up into a family of isomorphism’s
Hom(Fc, d) ∼= Hom(c, Gd) natural in c ∈ C and d ∈ D. This motivates why F is called left-,
and G is called right adjoint; they appear on the respective sides in the isomorphism. The
isomorphism consist of the horizontal maps displayed below.

Hom(GFc, Gd)

Hom(Fc, d) Hom(c, Gd)

Hom(Fc, FGd)

−◦ηcG
G(−)◦ηc

εd◦F(−)
Fεd◦−

The triangle laws 1.1 and the naturality of η and ε show that the mappings are inverse.

The natural isomorphism θ(c, d) : Hom(Fc, d) ∼= Hom(c, Gd) shows that Fc represents
the functor d 7→ Hom(c, Gd) and that Gd represents the functor c 7→ Hom(Fc, d). The
Yoneda lemma states that the natural isomorphisms going either way are determined by
the image of the identity. Indeed the identity under the isomorphism becomes the unit
ηc = θ(c, Fc)(idFc) and counit εd = θ(d, Gd)−1(idGd) of the adjunction. This shows that the
’natural isomorphism’ definition is equivalent to the unit-counit definition of an adjunc-
tion.

1.32. For any pair of categories D and C and an object c ∈ C the constant functor ∆(c) :
D → C is the functor such that ∆(c)(d) = c for all d ∈ D. Furthermore if we have a map
f : c → c′ in C we get a natural transformation f : ∆(c) ⇒ ∆(c′) where each component is
just f . This makes ∆ into a functor from C→ Fun(D,C).

1.33. Let p : D → C be any functor then a conecone over p is an object c ∈ C with a natural
transformation µ : ∆(c) ⇒ p. Concretely this means for any d ∈ D a map µd : c → p(d)
such that for any f : d→ d′ the following triangle commutes

c

p(d) p(d′)

µd µd′

p( f )

1.34. Given a functor p : D → C we can form the functor Cone(p) : Cop → Set assign-
ing to each object c ∈ C the set Nat(∆(c), p) of cones of p over c. This is a functor since a
map f : d → c turns a cone over c into a cone over d by precomposition. If the functor
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Cone is representable we call the representing object the limitlimit of the functor p and write
it as lim(p). When the limit exists representability means that there is an isomorphism
Hom(c, lim(p)) ∼= Nat(∆(c), p) natural in c. By the Yoneda lemma, a natural transformation
out of Hom(−, lim(p)) is fully determined by the image of idlim(p). We call the correspond-
ing cone λ : ∆(lim(p)) ⇒ p the limiting cone. Then any map f : c → lim(p) yields a
cone f λ over c with legs (λ f )d = µd ◦ f . Because lim(p) represents the Cone functor the
above assignment is an bijection and so we get an inverse: Every cone µ : ∆(c)⇒ p yields
a unique map c → lim(p) displayed below such that all the triangles involving µd, λd and
the induced map, commute.

p(d)

c lim(p)

p(d′)

p( f )

µd

µd′

λd

λd′

1.35. The above discussion dualizes as follows, for any functor p : D→ C:

Functor cone functor Cone(p) cocone functor coCone(p)
c 7→ Nat(∆(c), p) c 7→ Nat(p, ∆(c))

Representing object The limit lim(p) The colimit colim(p)
Natural isomorphism Hom(c, lim(p)) ∼= Nat(∆(c), p) Hom(lim(p), c) ∼= Nat(p, ∆(c))
Universal element the limiting cone the colimiting cocone

λ : ∆(lim(p))⇒ p λ : p⇒ ∆(lim(p))

1.36. The functor p : D → C for which we find a (co)limit is called a diagramdiagram and the cat-
egory D is called the shape of the diagram. Important examples of (co)limits in a category
C of a specific shape are

• For shape Disc(0), the empty category, there is a unique diagram Disc(0) → C. The
limit 1 over this diagram is called the initial object and the colimit ∅ is called the
terminal object.

• For shape Disc(2), the discrete category with two objects, a diagram Disc(2) → C
picks out two objects A and B in C. The limit A× B is called the binary product and
the colimit A + B is called the binary coproduct.

• For any cardinal κ a diagram Disc(κ) → C picks out an object Xi ∈ C for each i < κ.
The limit ∏i<κ Xi is called the product, similarly the colimit ∑i<κ Xi is called the
coproduct. Letting κ = 0 and κ = 2 yield the previous examples.

• For the shape D‖ =
{
· ·

}
a diagram D‖ → C picks out objects A, B ∈ C with

two parallel morphisms f : A → B and g : A → B. The limit eq( f , g) is called the
equalizer and the colimit coeq( f , g) the coequalizer of f and g.

• For shape Dcospan displayed below a diagram Dcospan → C picks out two morphisms
f : A → B and p : E → B with common codomain. The limit A×B E ( f and p are
implicit) is called the pullback of f and p.

17



Dcospan =


·

· ·

 Dspan =


· ·

·


• Dually, for shape Dspan = Dop

cospan displayed above a diagram Dspan → C picks out
two morphisms f : A → X and g : A → Y in C with common domain. The colimit
X +A Y ( f and g are implicit) is called the pushout of f and g.

Let λ be a cardinal, a category D is called filtered
category

λ-filtered if for each λ-small diagram, i.e. diagram
with less than λ arrows, has a cocone. For example D is ω-filtered, also called finitely
filtered, if

• for each a, b ∈ D there is an object c such that a→ c and b→ c;

• and for each parallel pair of morphisms f , g : a → b there is an morphism e : b → c
such that e f = eg.

A colimit of an λ-filtered diagram is called a λ-filtered colimit.

1.37. If in a category C, all diagrams of shape D have limits resp. colimits then the category
C is said to have all D-limits resp. D-colimits. This leads to notions such as: categories

having
colimits/limits

categories
having products, coproducts, equalizers, coequalizers, pullbacks, pushouts, filtered col-
imits, etc.

A category C has products iff Cop has coproducts. Similarly for initial and terminal; equal-
izers and coequalizers; pullbacks and pushouts.

1.38 ((co)limits as adjunction). There is a category Fun(D,C) of all diagrams of a certain
shape. If a category C has all D-limits then the family of isomorphisms Hom(c, lim(p)) ∼=
Nat(∆(c), p) is also natural in p ∈ Fun(D,C). Naturality in both p and c means that there is
an adjunction ∆ a lim. Dually if a category C has all D-colimits we have colim a ∆.

1.39. We end our chapter with some observation about the existence of (co)limits. Every
observation about limits comes with a dual observation about colimits indicated in paren-
thesis.

A category C has

• binary products if it has pullbacks and an initial object. The product of A and B is
then given by A×1 B the pullback over A→ 1← B. Dually, it has binary coproducts
if it has pushouts and an initial object, where the coproduct of A and B is given by
A +∅ B.

• finite
(co)products

finite (co)products if the following equivalent properties hold

(i) C has n-(co)products for all n ∈ Nat

(ii) C has an initial (terminal) object and binary (co)products

Proof. Take the (co)product ‘one by one’, i.e. ∏ Xi = ((1× X0)× X1)× ...
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• small
(co)products

small (co)products if for every set S it has |S|-(co)products.

• finite (co)limitsfinite (co)limits if the following equivalent properties hold

(i) For any shape D such that Mor(D) is finite it has all D-(co)limits.

(ii) It has binary (co)products and (co)equalizers.

• all small
(co)limits

all small (co)limits if it has D-(co)limits for all small categories D.

1.40. Let F : C→ D be a functor and p : I → C be any diagram in C.

• If lim(p) exists, then F preserves this limit if F(lim(p)) = lim(F ◦ p).

• If X ∈ C and F(X) = lim(F ◦ p) then F reflects this limit if X = lim(p).

• If lim(F ◦ p) exists then F creates or lifts this limits if there is an X ∈ C such that
F(X) = lim(F ◦ p) and moreover X = lim(F).

Similarly we can talk about functors preserving/reflecting/creating certain colimits, or all
limits of a certain shape, or all limits in general.

1.41. Let C and D be categories, then there is a product
category

product category C×D. The product cate-
gory has as objects pairs of objects (c, d) ∈ Obj(C×D) with c ∈ Obj(C) and d ∈ Obj(D). A
morphism ( f , g) from (c, d) to (c′, d′) is a pair of morphisms f : c → c′ in C and g : d → d′

in D.

1.42. For any category C we obtain the functor C×− : Cat → Cat, this functor has a right
adjoint Fun(−,C) assigning to a category E the category of functors from C to E. This makes
the subcategory of small categories cartesian closed with the functor categories serving as
exponential objects.

1.43. The product category is the product in the category of small categories. The above
makes the category of small categories an cartesian closed category.

Recall that the counit of such an adjunction is called evaluation. At Set ∈ Cat it is given by
ev : C×Fun(Set,C)→ Set on objects given by ev(c, P) = P(c). We will write evc : Psh(C)→
Set given by evc(P) = ev(c, P), this makes ev(−) into functor.

1.44. A natural transformation θ : F ⇒ G between F, G : C→ D is represented by a functor
C× 2→ D.

1.4 Monads

1.45. A monadmonad on a category C is an endofunctor T : C→ C together with unit η : idC → T
and multiplication µ : T2 → T natural transformations such that the following diagrams
commute

T T2 T

T

ηT

µ
Tη

T3 T2

T2 T

Tµ

µT

µ

µ
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Similarly a comonadcomonad on D is an endofunctor with a counit ε : T ⇒ idD and comultiplica-
tion µ : T ⇒ T2.

1.46. Every adjunction F : D C : U induces a monad on C given by T = FU, the unit of
the adjunction η : idC ⇒ FU serves as unit for the monad, and the multiplication is given
by µ = FεU. The triangle laws confirm that this is a monad. Dually, this adjunction also
induces a comonad on D.

The mapping from adjunctions to monads on C or comonads on D has an section: given a
monad T : C → C there is a category CT called the category of T-algebras with an adjunc-
tion F : CT C : U.

1.47. An T- algebra for a
monad

algebra is an object A ∈ C together with a map f: TA → A such that the
following diagrams commute

A TA

A
idA

ηA

f

T2 A TA

TA A

µA

T f f
f

A morphism of T-algebras between f : TA → A and g : TB → B is a map k : A → B
interacting well with the monad structure in the sense the the following diagram commutes

TA TB

A B

f

Tk

g

k

This gives a category CT of T-algebras.

1.48. There is an obvious forgetful functor UT : CT → C sending an T-algebra f : TA→ A
to A. This functor has an left adjoint FT : C → CT sending an object A ∈ C to the free algebrafree
T-algebra on A. This is the object TA with a map µ : T2 A→ TA as T-algebra map.

1.49. In general there can be many adjunctions F a U with U : D → C inducing the
same monad T on C. In fact we can consider the category of such adjunctions inducing the
same monad on C. The category of T-algebras is then terminal in this category, i.e for each
adjunction as above there is a canonical map D→ CT sending d ∈ D to FT(U(d)).

1.50. An adjunction natural isomorphic to the adjunction between C and a category CT of
T-algebras is called a monadic

adjunction
monadic adjunction. Similarly a functor U : D → C is monadic if it

fits in a monadic adjunction.

1.51. A monadic functor U : D→ C creates all limits.

Proof. Let T be the induced monad, we can then take D ∼= CT by assumption. Since U is a
right adjoint it preserves all limits.

Let p : I → CT be a diagram such that lim(U ◦ p) exists. Write p(i) : TAi → Ai, then
U ◦ p(i) = Ai such that limi(Ai) = lim(U ◦ p). For i → j in I we can draw a piece of the
diagram p as the back side of
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TAi TAj

T(limi Ai)

Ai Aj

limi Ai

p(i) p(j)
T(πi) T(πj)

πi

f

πj

Now T(limi Ai) is already a cone over {TAi}i∈I and also forms a cone over U ◦ p. Since
limi Ai is the limit we find the unique dashed map f displayed above. We claim that f is
the limit of p in CT .

To show that f is an T-algebra we have to show that f ηlimi Ai
= idlimi Ai

. Since these are
maps into a limit is is enough to show that both define the same cone over U ◦ p. The outer
side of the diagram below are the ith legs of the cones. The right hand square commutes
by assumption, the left hand square commutes since η is natural, and the bottom triangle
commutes since p(i) is an T-algebra.

limi Ai T(limi Ai) A

Ai T(Ai) Ai

ηlimi Ai

πi

f

T(πi) πi

ηAi

idAi

p(i)

T2 A TA

T2 Ai TAi

TAi Ai

TA A

T( f )

µA

T2(πi)

f

T(πi)

T(p(i))

T(µAi
)

p(i)
p(i)

T(πi)

f πi

A similar argument validates the other law displayed above right. We want to show that
πi f µA = πi f T( f ). In the picture the inner square commutes since p(i) is an T-algebra, the
other squares commute by assumption.

1.52. We say that a monad is idempotent
monad

idempotent if any of the following equivalent conditions are fulfilled

(i) The multiplication µ : T2 ⇒ T is an natural isomorphism.

(ii) The multiplication µ : T2 ⇒ T is a component wise monomorphism.

(iii) The natural transformations Tη and ηT from T ⇒ T2 are equal.

(iv) Any T-algebra map TA→ A is an isomorphism.

Proof. (i)⇒ (ii). Is trivial.
(ii)⇒ (iii). The monad laws assert that µηT = µTη, since µ is mono this means ηT = Tη.
(iii)⇒ (iv). For any T-algebra ηA f = T( f )ηTA by naturality of η. By (iii) we have ηTA =
T(ηA) and so ηA f = T( f ηA), but f ηA = idA and so ηA
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TA T2 A

A TA

f

ηTA=T(ηA)

T( f ηA )=id T f

ηA

(iv)⇒ (i). Every component µA is in particular an T-algebra map and so an isomorphism.

1.53. Suppose that i : D → C is an fully faithful right adjoint, then the induced monad
T : C → C is idempotent. Moreover if an object A admits an T-algebra f then point
(iv) above shows that this map is an isomorphism, because any such T-algebra has right
inverse ηA this makes this T-algebra unique. Finally in such a situation the functor i is
actually monadic [Rie17, 5.3.3].

22



Chapter 2

Reflective subcategories,
localization and factorization
systems

2.1 Reflective subcategories

Suppose we have a nice category E with finite limits and all colimits. Often E will be
that category of set based models of an algebraic theory. Examples include the categories
of groups or the category of presheaves on a site X. We will be concerned with a full
subcategory C ↪→ E , this corresponds to those objects/models satisfying some property.
Tautologically, this is the property of ’belonging to C’, in practice the property will define
the subcategory.

2.1. Examples of this situation are

• Ab ↪→ Grp, groups which are abelian

• Sh(X) ↪→ Psh(X), presheaves which are sheaves with respect to the open covers of X

• Kan ↪→ Psh(∆), simplicial sets satisfying the Kan condition

The embeddings above are forgetful functors in the sense that they forget the property
defining the subcategory in question. In this light, it is natural to wonder if the inclusion
admits a left adjoint L : E → C which corresponds to freely forcing the property to hold.

2.2. A full subcategory C ↪→ E such that the inclusion has a left adjoint L : C→ E is called
a reflective

subcategory
reflective subcategory. Analogously, a functor L : E → C with a full and faithful right

adjoint is called the reflector. The reflector produces from e ∈ E an object L(e) ∈ C which
we can think of as an approximation of e satisfying the property defining the subcategory.

2.3. For the full subcategories above we get
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• Ab Grp> , to any group G we can associate its abelianization which is the quotient
G/[G, G] of G by the commutator subgroup [G, G].

• Sh(X) Psh(X)> , any presheaf P has a sheafification aP defined in 3.34.

• Non example: the inclusion Kan ↪→ Psh(∆) does not have a left adjoint. There is
however the fibrant replacement functor R : Psh(∆)→ Kan sending an simplicial set
S to it’s fibrant replacement which is almost left adjoint to the inclusion (see 6.2).

C E
i

>

L

Lets consider the general situation i a L as displayed above. The endofunctor Li : C → C,
takes an object c ∈ C, forgets the property of belonging to C and then freely makes it into an
C object. Intuitively, we would expect that Lic ∼= c, this is in fact the case by isomorphisms
εc : Lic→ c: these are natural in c and form the counit ε : Li→ idC as the following lemma
shows.

2.4. Suppose we have an adjunction L a i with counit ε, then

(i) i is faithful ⇐⇒ ε is a component wise epimorphism

(ii) i is full ⇐⇒ ε is a component wise split monomorphism

(iii) i is full and faithful ⇐⇒ ε is a component wise isomorphism

Proof. Note that (i) and (ii) =⇒ (iii). For (i) and (ii) we need the following observation.
In terms of the unit and counit the isomorphism of the adjunction Hom(Lc, d)→ Hom(c, id)
sends f 7→ i f ◦ ηic, for any c ∈ C and d ∈ D. After precomposition with εc we obtain

f f ◦ εc i( f ◦ εc) ◦ ηic

Hom(c, d) Hom(Lic, d) Hom(ic, id)

∈ ∈ ∈

i(−)

ε∗c adj

By functoriality and the triangle law: i( f ◦ εc) ◦ ηic = i f ◦ iεc ◦ ηic = i f , so the composite is
just the action of the functor i on hom sets. Recall that i is faithful resp full iff the action on
hom sets is injective resp surjective. Since adj as displayed above is an isomorphism, the i
action on hom sets is injective resp surjective iff ε∗c is injective resp surjective. But then by
[Rie17, 1.2] this is the case iff εc is epi resp. split mono.

2.5. • Theorem 2.4 has a dual version relating the full/faithfullness of the left adjoint to
analogous properties of η. Instead of precomposition with the counit, postcompose
with the unit and use the hom isomorphism of the adjunction in the other direction.
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• The above also highlights why fibrant replacement R : Psh(∆) → Kan can never be
part of an reflective adjunction. Indeed take the kan complex ∆0, this complex has
one simplex in each dimension (degenerate for dimensions greater than 0). Fibrant
replacement glues at least one extra 1 non degenerate simplex onto ∆0 so there can
be no isomorphism between ∆0 and R(∆0).

2.6 (limits and colimits). Reflectivity of a subcategory i : C ↪→ E allows easy computation
of limits and colimits in C that E admits. For example, if we have a diagram p : D → C
such that the induced diagram ip : D→ E has a limit e = lim(ip) ∈ E then e ∈ C and forms
the limit of p. This is because i is monadic, see 1.53, and so creates all limits, 1.51. We can
already show how colimits are computed which we now show

2.7. Suppose there is a reflective subcategory i : C ↪→ E with reflector L : E → C. The colimit of
a diagram p : D → C exists when ip : C → E admits a colimit colim(ip) and is then given by the
reflection L(colim(ip)).

Proof. Suppose l = colim(ip) ∈ E exists and let λ : ip ⇒ ∆(l) be its colimiting cone. Since
left adjoints preserve limits, we get a colimiting cone Lλ : Lip → ∆(Ll) over the diagram
Lip in C. But ε : Li ∼= idC and so the diagram Lip is equivalent to p, hence Ll is a colimit of
p.

2.8. The adjoint pair i a L induces a comonad Li on C and monad iL on E . The counit shows
that the comonad is equivalent to the identity. More interesting is that monad iL : E → E ,
here the counit shows that iLiL ∼= iidCL ∼= iL and so the functor iL is idempotent. The pair
i, L is then a splitting of the idempotent iL in C, indeed L is epi and i is mono and even full
and faithful. This allows us to consider L as a coequalizer of iL and idE .

2.9. There is a dual notion of a coreflectivecoreflective subcategory, the properties are simple dualiza-
tions of the above discussion which we will now summarize:

• A subcategory i : C ↪→ E is coreflective if the inclusion has a right adjoint R : E → C
called the coreflection.

• Colimits of a coreflective subcategory are closed under colimits and so are computed
as if in E . A limits can be be computed in E and then coreflected into C.

• Since i is full and faithful the unit η of its right adjoint R is an isomorphisms. There-
fore the monad Ri is the identity and the comonad iR is an idempotent.

2.2 Localization

2.10. Just as for groups, it will turn out that a (co)reflective subcategory is essentially de-
termined by it’s ’kernel’. The kernel of a functor L : E → C will be the preimage of Core(C)
the core of a

category
core of a category C, the subcategory of all isomorphisms. This makes Core(C) into the

maximal subgroupoid of C. The reason for not picking the subcategory of say the identity
maps, which might seem to be a more natural choice, is because this is not invariant un-
der equivalence of categories. The kernel of an

functor
kernel of an functor is ker(L) = L−1(Core(C)), i.e. the

category of morphisms in E that get sent to isomorphisms in C.
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2.11. Let Subfull(E) denote the poset of full subcategories of E . Inside this poset we find
subposets of both the reflective and coreflective subcategories. Similarly let Subwide(E) be
the poset of wide subcategories containing all isomorphisms. This notation is a bit non
standard, normally a wide subcategory is a category containing all identities, but this is
not invariant under equivalence of categories. With this we can describe the kernel as a
contravariant functor ker : Subfull(E)→ Subwide(E).

2.12. Conversely we can see if we can generate a reflective or coreflective subcategory from
an wide subcategory S, it will then be more convenient to refer to the collection of arrows
S = Mor(S). Suppose we have a class of maps S of E then

• An object X ∈ E is S-localS-local if for each f : A → B in S the induced Hom( f , X) :
Hom(B, X)→ Hom(A, X) is an isomorphism.

• An map f : A → B in E is an (left)
S-equivalence

(left) S-equivalence if for any S-local object X the
induced Hom( f , X) : Hom(B, X)→ Hom(A, X) is an isomorphism.

• An object X ∈ E is S-colocalS-colocal or S-resolvant if the induced Hom(X, f ) : Hom(X, A)→
Hom(X, B) is an isomorphism.

• An map f : A → B in E is (right)
S-equivalence

(right) S-equivalence if for any S-colocal object X the
induced Hom(X, f ) is an isomorphism.

We now give some properties of left S-equivalences, dual properties hold for right S-
equivalences.

(i) If f is an left (right) S-equivalences then any right (left) inverse g is also an left (right)
S-equivalence. Indeed we have for any S-local object

Hom(A, X) Hom(B, X) Hom(A, X)
f ∗

( f g)∗=id∗

g∗

where f ∗ and id∗ are isomorphisms by assumption, so g∗ must be an isomorphism as
well.

(ii) An S-equivalence between S-local objects is an isomorphism. The definition of an S-
equivalence yields an bijection f ∗ : Hom(B, A) → Hom(A, A). Then the preimage of
idB yields an right inverse g : B→ A. By the previous point g is also an S-equivalence
an so we obtain a further right inverse h of g. But then f = h and this is two sided
inverse of g, showing that f is an isomorphisms.

(iii) Every f ∈ S is an S-equivalence, this follows easily.

2.13. If S = ker(L) for some reflector L : E → C, then

(i) the category C is equivalent to the full subcategory spanned by the S-local objects

(ii) and the left S-equivalences are just S.

Dually if S = ker(R) for a coreflector R : E → C, then C is the category of S-colocal objects and
right S-equivalences are S.
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Proof. The equivalence of categories will be witnessed by i. Since it is already full and
faithful we only have to show that its essential image is the category of S-local objects.

We first show that for any X ∈ C the image iX is S-local. For any f : A→ B in S we obtain
using the adjunction the following commutative square

x x f

Hom(B, iX) Hom(A, iX)

Hom(LB, X) Hom(LA, X)

εX Lx εxLxL f

∈ ∈

∼=

f ∗

∼=

(L f )∗∈ ∈

but L f is an isomorphism, so (L f )∗ is as well which means f ∗ is too.

Now for surjectivity, suppose that X is S-local then LX ∈ C satisfies x ∼= iLX. Moreover
this is given by the unit map ηX : X → iLX. By assumption this is a map between S-local
objects, so it will be enough to show that ηX is an S-equivalence. The map LηX has, by
the triangle laws, a left inverse εiX , but the counit components are isomorphisms so its left
inverse LηX is also an isomorphism. This shows that ηX ∈ ker(L) hence ηX ∈ S which
means in particular that ηX is an S-equivalence.

(ii) if f is any S-equivalence then for any S-local object X we have Hom(B, X) ∼= Hom(B, iLX)
by the unit and so we can apply the result from above showing that

x x f

Hom(B, X) Hom(A, X)

Hom(B, iLX) Hom(A, iLX)

Hom(LB, X) Hom(LA, X)

εX Lx εxLxL f

∈ ∈

∼=

f ∗

∼=

∼=

f ∗

∼=

(L f )∗∈ ∈

then the same square shows that L f has to be an isomorphism and so f ∈ S.

2.14. This shows that the kernel map is split mono: we can reconstruct the reflective lo-
calization given the maps S sent to isomorphisms as the category of S-local objects. This
localization has the property that all maps in S become isomorphisms on S-local objects.
On the other hand it is not the case that any collection of morphisms are the kernel of a re-
flective localization, or any functor for that matter. Indeed if f is a map with a right inverse
g and g ∈ ker(L) for some L then also f ∈ ker(L). We do have the following partial inverse.

2.15. Given a collection of morphisms W ⊂ Mor(E) to invert we can form the localizationlocalization
of E at W which is E [W−1] together with an identity on objects functor γ : E → E [W−1].
Intuitively we obtain E [W−1] by formally inverting the morphisms in W.
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The category E [W−1] is a category with the same objects as E and whose morphisms from
A to B are zig-zag chains of morphisms alternatingly form E and W−1.

A · · · · · · · B∈E ∈W ∈E ∈W ∈W ∈E

Quotiented by the equivalence relation where

• Composable maps can be composed and we can freely add identity maps

• We can remove any · · ·
f f

.

For the exact definition see [Rie19].

2.16. The most important thing about this definition is not the construction itself but the
universal property it enjoys.

2.17. For any functor F : E → C such that F( f ) is an isomorphism if f ∈ W, factors uniquely
through γ as displayed below.

E C

E [W−1]

F

γ
F!

Proof. By assumption for every f ∈ W there is an unique map i f ∈ C inverse to F( f ).
Now F! acts the same on objects as F. On zig-zag chains it sends all forward morphisms
to the image under F, and sending backward morphisms f to the forward morphism i f .
This map is clearly unique and it defines an chain of composable morphisms which has a
unique composite in C. Moreover it is clear that F! ◦ γ = F.

2.3 Decomposition

2.18. Suppose we have a category C, we will examine the situation in which we are able to
decompose this category into two simpler wide subcategories L ↪→ C ←↩ R such that the
smallest subcategory of C containing L and R is the whole of C. We will write l0, l1, ... and
r0, r1, ... to indicate that maps belong to L and R respectively.

In general a morphism f of C will decompose into an arbitrary long chain r1 ◦ l1 ◦ r2 ◦ · · · .
These unwieldy chains are undesirable so we will restrict our attention to such decompo-
sition where we may distribute left maps over right maps in the following sense. Given a
composeable pair l and r there are l′ and r′ such that lr = r′l′. Note that id is both in L and
R due to both being wide subcategories. In particular we can always write rid = idr and
similarly for l.

2.19. There is a decomposition system on Set where L is the category of surjective functions
and R is the category of injective functions.
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With such a decomposition system we can easily retrieve C from the subcategories L and R
as follows.

2.20. Let LR be the category with the same objects as C and whose morphisms are compos-
able pairs (l, r) with l ∈ L and r ∈ R. The composition uses the distributor: (l, r) ◦ (l′′, r′′) =
(l ◦ l′, r′ ◦ r) where r′l′ = l′′r. The identity at C is given by (id, id) which is an identity by
the law of the distributor.

2.21. We have a full and surjective functor U : LR→ C.

Proof. We define the map U : LR → C which is the identity on objects and sends an arrow
U(l, r) = r ◦ l. This functor is obviously surjective. Moreover since C is a subcategory of
the category freely generated by L and R we can write any arrow f = rl for some l and r,
now clearly U(r, l) = f so f is full.

2.22. We might ask for the functor to be faithful but it turns out this is way too strong. For
example the surjective-injective decomposition system of 2.19 would not yield an faithful
functor even though decompositions are unique up to unique isomorphism. Instead we
might ask for the functor to be ’essentially faithful’ where we define a notion of isomor-
phism between maps of LR. Even though such a notion is easy enough to define the whole
approach is rather ad-hoc. Instead we will replace the category LR to one with an natural
notion of isomorphism.

2.23. Recall that the ordinal category 2 is the category consisting of two objects 0, 1 and
a single non identity arrow 0 → 1. For any category C we can then define C2 to be the
functor category Fun(2,C) called the category of

arrows
category of arrows of C. Concretely, the objects of C2

are morphisms f , g of C and an arrows u : f → g in C2 is a commutative square

· ·

· ·

u0

f g
u1

2.24. The subcategories L and R induce full subcategories of C2 which we will write as C2|L
and C2|R. Then f is an object of C2|L when f is an arrow of L, but we retain all morphisms
from C2, i.e. commutative squares in C. We can then take the pullback of the categories
C2|L and C2|R along the codomain and domain projections displayed below left.

C2|L ×C C2|R C2|R

C2|L C

dom

cod

Composing the projections πL, πR of C2|L ×C C2|R with the inclusions iL : C2|L ↪→ C2

and iR : C2|R ↪→ C2 we obtain, by the universal property of the pullback, a canonical
monomorphism i = 〈iLπL, iRπR〉. To see that this map is mono, suppose we have two
morphisms x, y such that ix = iy. For L we get iLπLx = iLπLy so πLx = πLy since iL is
mono. Repeating the same for R we find that x and y induce two identical limiting cones
over the pullback diagram so by the universal property x = y.
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C3|LR C2|L ×C C2|R

C3 C2 ×C C2

∼

i

〈s2,s0〉

Since C is a category, the map 〈s2, s0〉 : C3 → C2 ×C C2 sending a commutative triangle
r ◦ l = f to the composable arrows r ◦ l is an isomorphism, this essentially states that com-
positions exists uniquely. Now by the pullback stability of monomorphisms and isomor-
phisms the above pullback square shows that C2|L ×C C2|R is isomorphic to a subcategory
of C3 which we will henceforth denote C3|LR.

With these preliminaries we can now package up the data of a decomposition system (L,R)
of a category C into C3|LR equipped with the composition map p to C2. The statement that
every arrow f of C decomposes into some r ◦ l is equivalent to the statement that p is
surjective on objects. The essential uniqueness of decompositions is then equivalent to p
being fully faithful which we will see in the next section.

2.25. Suppose we have a decomposition system (L,R) on C, by the above remarks this
correspond to an surjective functor p : C3|LR → C2. It is then natural to consider a situation
where this functor has a section d : C2 → C3|LR. In fact, such any such map d : C2 → C3

determines such a decomposition system where L is the image of s2 ◦ d and R is the image
of s0 ◦ d in C.

2.26. An functorial
decomposition
system

functorial decomposition system is a functor d : C2 → C3.

2.4 Factorization and lifting properties

2.27. In relation with decompositions of a category one often encounters lifting properties
of maps in the left class against maps of the right class. A map l has the left lifting property
with respect to r, or r has the right lifting property with respect to l, if for each diagram
commutative square of the shape

X E

Y B

l r

i

there exists a unique diagonal filler i making everything commute. We will write l � r in
this situation. If in addition the filler is unique we say that the map l is left orthogonal to r
and we write l ⊥ r. Analogously a class of maps L is said to have left lifts against (resp. be
orthogonal to) a class R if for each l ∈ L and each r ∈ R we have l � r (resp l ⊥ r), in this
case we write L�R (resp. L ⊥ R).

2.28. We prove the ‘if’ directions first. Suppose we have two subcategories L and R of C. Then L�R
if and only if p : C3|LR → C2 is full. And L ⊥ R if and only if p : C3|LR → C2 is full and faithful.
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Proof. Suppose we have two decompositions f = rl and f ′ = r′l′ in C3|LR and an arrow
between (u, v) : f → f ′ in C2, this means that the diagram without w below left commutes.
Now rearrange this diagram to the one displayed below right, now if L ⊥ R we find the
filler w. But then w is also the desired lift in the diagram on the left so p is full. Now if
there were another lift w′ in the diagram on the right, i.e. p is not faithful, then this would
also be an diagonal filler on the right contradicting the uniqueness implied by L ⊥ R.

· · ·

· · ·

l
u

f

r
w v

l′

f ′

r′

· ·

· ·

l

l′u

r′

vr

w

Now for the ‘only if’ directions. Given a lifting problem of l against r displayed below left.
We can extend it to an arrow of C3|LR as displayed below right since identities are part of L
and R. Then the existence of a w on the right gives the required lift on the left. Suppose we
have another lift w′ in the diagram on the right, then this also fits into the diagram on the
left. Now if p is faithful then w = w′ and so lifts are unique.

· ·

· ·

l

u

r

v

w
· · ·

· · ·

l
u

l

id
w v

id

r

r

Now if the map p : C3|LR → C2 is essentially surjective on objects we get that for any f in C
we find a decomposition rl such that rl and f are isomorphic as objects of C2. In particular
we have isomorphisms u and v such that the outer rectangle below commutes.

· · ·

· ·

l

u

r

vr v

f

lu−1

Now if we stipulate that every isomorphism of C belongs to R and L we can follow that p is
in fact surjective on objects by noting that lu−1 belongs to L and vr belongs to R above. Now
among other things the orthogonality of L and R imply that decompositions are unique up
to unique isomorphism. This is because two decompositions rl and r′l′ of the same map fit
into two lifting diagrams giving unique arrows both ways. What is more surprising is that
canonically unique decompositions also imply that the left class is orthogonal to the right
class. The following is due to Joyal.
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2.29. Given a decomposition structure (L,R) on C, then decompositions are unique up to unique
isomorphism if and only if L ⊥ R

Proof. The ‘only if’ side follows from the argument given above. For the ‘if’ part we first
show uniqueness. Given a lifting problem (u, v) of l against r as displayed on the left
below. Factor u and v as displayed. Then the dotted arrows are composites lvl and rru and
so in L and R respectively. Thus we have two (L,R) decompositions of the map going from
S to T′ and hence obtain a unique isomorphism k. Then ruwlv is a lift of l against r.

S · S′

T · T′

u
lu

∈Ll

ru

∈R
r

v
lv

k

rv

S · S′

·

T · T′

u
lu

∈L

l

ru

r

i r f

∈R

v
lv

l f
j

rv

Now suppose that there is another lift f which we will immediately decompose as r f l f as
displayed above right. Then the dotted composites are again in L and R respectively so we
get double decomposition’s of the arrows u and v and so obtain unique isomorphisms i
and j. Now ij is again an isomorphism and moreover ijlvl = lu and rruij = rv and so k = ij
by the uniqueness of the isomorphism. But then f = r f l f = ruijlv = ruklv which was the
diagonal lift we found previously. We conclude that L ⊥ R.

2.30. An easy way to obtain orthogonal or weakly orthogonal classes of maps in a category
C is to start with some class of maps and take all maps having the relevant liftings against
this class. Starting with a class I or J of Mor(C) let

I� := {r ∈ C : I � r}, �J := {l ∈ C : l �J .}

. Then J � �J and I� � I. Similarly we have (−)⊥ and ⊥(−) producing orthogonal
classes.

2.31. The operations (−)� and �(−) are functors PMor(C) → PMor(C) on the powerset
of morphisms of a category C, recall that the powerset is a poset category under inclusion.
They actually form an contravariant self adjunction in the sense that

J ⊂ I� ⇐⇒ I ⊂ �J

such an contravariant adjunction between posets is called an antitone Galois connection
and it produces a closure operation on the right, and a closure operation on the left. These
are obtained by composing (−)� and �(−) and correspond to the monad and comonad
formed by iterating the functors of the adjunction:

c`left(I) := �(I�), c`right(J ) := (�J )�

These satisfy I ⊂ c`left(I) and c`left(c`left(I)) = c`left(I), the same holds for c`right.

32



2.32. A (weak)
factorization
system

(weak) factorization system is a decomposition (L,R) such that equivalently L =
�R or L� = R. We say that the is a functorial factorization system if it comes with a section
C2 → C3|LR.

Correspondingly an orthogonal
factorization
system

orthogonal factorization system or strict factorization system is de-
fined analogously with ⊥ replacing �. Orthogonal factorization systems are automatically
functorial because the decompositions are unique.

2.33. We say that I generates a weak (resp. orthogonal) factorization system from the
left if (c`left(I), I�) is a weak (resp. orthogonal) factorization system. Dually the class J
generates a weak (resp. orthogonal) factorization system from the right if (�J , c`right(J ) is
a weak (resp. orthogonal) factorization system.

For Topoi, which we consider later, we will need a certain lifting property against monomor-
phisms in a category. For this we introduce the following

2.34. Let m : S T be an monomorphism in C. Consider an object E ∈ C and then any
map v : S → E, we want to consider the possible diagonal fillers completing the diagram
below.

S E

T

m

v

Hom(T, E) Hom(S, E)m∗

Equivalently we can consider the induced precomposition map m∗ between the hom sets
as shown to the right. An object E is

• f -separatedf -separated if fillers are unique when they exist, in other words m∗ is injective.

• f -fibrantf -fibrant if fillers exists, in other words m∗ is surjective.

• an f -sheaff -sheaf if fillers exist uniquely, in other words m∗ is bijective.

Note that if an object is both f -separated and f -fibrant it is an f -sheaf.

We can relativize the above, replacing the object E with a map p : E → B. We then require
an additional map u : A→ B replacing the lifting triangle with a lifting square

S E

T B

m

v

p

u

Hom(T, E) Hom(S, E)×Hom(S,B) Hom(T, B)
(m∗ ,p∗)

For the induced hom map corresponding to the lifting problem now sends a diagonal from
m to p to the maps obtained by pre- and postcompostition with p and m respectively. The
pullback on the right are precisely pairs of maps like v and u such that further composition
with m and p yield the same map from S to B, i.e. such that the square commutes.

An map p : E→ B is

• f -separatingf -separating if fillers are unique when they exist, in other words (m∗, p∗) is injective.

• f -fibrationf -fibration if fillers exists, in other words (m∗, p∗) is surjective.
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• an f -orthogonalf -orthogonal if fillers exist uniquely, in other words (m∗, p∗) is bijective.

To digest this definition we have the following theorem.

2.35. In a category C with finite limits if a map p is f -seperating (fibration, orthogonal) then all of
its fibres are f -seperated (fibrant, sheaf).

Proof. Indeed suppose that we want to extend v along m then we get a lifting problem of m
against p which by assumption admits the dotted diagonal filler f of the back square. By
the universal property of the pullback we get a unique map ( f , !) that is the extension of f
along v. Any other extension clearly induces another lift of m against p so they must equal
( f , !).

S E

t∗E

T B

1

m

v

p
t̃

f

!

( f ,!)

t

2.36. We can extend the above definition to classes of maps J , requiring that an J -fibration
(resp J -separated, J -sheaf) if it is an f -fibrant (resp f -separated, f -sheaf) for all f ∈ J .
This is in fact an instance of extension by colimits which we will meet in 3.9, because J is
simply the union (which is a colimit) of the singletons {j}.

2.37. We wish to already emphasize already the following parallel between parts to come:

section 3.31 Let J be an Grothendieck topology on C. This is equivalent to a collection of
monomorphisms J of the category Psh(C) 3.31. Then the sheaves with respect to this
topology are precisely the J -sheaves in the above sense.

section 5.33 Let J be a class of generating cofibrations (resp anodyne maps) of a cofi-
brantly generated model category C. Then the trivial fibrations (resp. fibrations) of C
are precisely the J-fibrations.
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Chapter 3

Topos theory

3.1. For a small category C a contravariant functor F : Cop → Set will be called a presheafpresheaf
on C. The collection of preasheaves on a small category C form the category Psh(C) which
is the Psh(C)category of presheaves on C. This is just the functor category Fun(Cop, Set) meaning
that a morphism of preshaeves F → G is a natural transformation between F and G.

3.2. The Yoneda embedding shows that the there is a full and faithful functor y : C →
Psh(C). This allows us to consider Psh(C) as a kind of extension of C. The nature of this
extension will be elucidated in 3.1.

3.3. The category Psh(C) has all small limits and colimits and they are computed pointwise in the
sense that for a diagram X• : I→ Psh(C)

(lim
i

Xi)(c) := lim
i

Xi(c), (colim
i

Xi)(c) := colim
i

Xi(c),

Proof. Since Set has all small limits and colimits the above functors are well defined ele-
ments of the PshC. To verify that it is actually the limit (the colimit proof works the same)
we verify the universal property

Hom(Y, lim
i

Xi) ∼= Nat(∆Y, X•)

A natural transformation τ ∈ Nat(∆Y, X•) is represented by a functor τ : Fun(I× 2,Psh(C))
such that

τ(i, 0) = Y, τ(i, 0→ 1) = τi, τ(i, 1) = Xi

By applying the cartesian closed structure on Cat we can transform this to a functor F :
Cop → Fun(I× 2, Set) such that

F(c) : (i, 0) 7→ Y(c), F(c) : (i, 0→ 1) 7→ τi(c), F(c) : (i, 0) 7→ Xi(c),

But for any c this is just a natural transformation F(c) ∈ Nat(∆(Y(c)), X•(c)) which by
the universal property of the limit corresponds to fc ∈ Hom(Y(c), limi Xi(c)). This yields
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an unique family of maps fc : Y(c) → limi Xi(c) which is moreover natural in c by the
naturality of τ. So we get the natural transformation f : Y → limi Xi as required.

3.4. The category of presheaves Psh(C) inherits many more pleasant properties from Set.
This, together with the remark that C is canonically embedded into Psh(C) by the Yoneda
embedding y, makes Psh(C) a very good context for studying C: If C misses a property
that makes a certain construction impossible then we can attempt it on its image in Psh(C)
under the Yoneda embedding. Consequently we don’t need to ask ‘Does C admit a certain
construction?’ but instead can ask ‘Does the construction in Psh(C) descend to C?’.

3.1 Density and extension by colimits

In this chapter we will show how C sits inside Psh(C).

3.5. Given a category E and a subcategory i : C ↪→ E we say that the C together with i are
a dense

subcategory
dense subcategory in E if every object e ∈ E is some colimit of a diagram valued in C.

In other words, there is a diagram d : De → C such that colim(De
d−→ C ↪→ E) = e for each

object e ∈ E . Similarly we can talk about an arbitrary functor F : C→ E being dense functordense.

3.6. For every object e ∈ E there is a slice category E/e with the canonical projection E/e → E
sending f 7→ dom(e). The colimit over this diagram is e, so colim(E/e

dom−−→ E) = e. The
proof is very similar to the Yoneda lemma and relies on the fact that any f ∈ E/e factors as
f ◦ ide. Recall that a cocone over E/e → E into e′ is a natural transformation θ : dom → ∆e′

sending f ∈ E/e to θ f : c → e′. Then θide : e → e′, so to show that e is the colimit we just
have to check that this map is unique. Using f = f ◦ ide and naturality gives

c e

e′ e′

θ f

f

θide

so θ f = θide ◦ f . Each natural transformation gives us a map θide : e→ e′. Furthermore each
such map produces a natural transformation, hence e = colim(E/e → E). And so we have
that every category in canonically dense in itself.

3.7. We now wish to restrict the canonical diagram E/e → E to a subcategory C, this will
give us a canonical way to obtain e as a colimit valued in C as in 3.5. Instead of doing
this in an ad-hoc fashion, i.e. restricting the projection functor E/e → E by considering the
subcategory of E/e induced by the subcategory C ↪→ E , we generalize the slice construction.

Given two subcategories S ↪→ E ←↩ T, their comma
category

comma category is the category ES/T whose

• objects are morphisms f : s→ t in E where s ∈ S, t ∈ T

• morphisms (u, v) : f → f ′ are pairs u ∈ S and v ∈ T such that the following square
commutes
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s s′

t t′
f

u

f ′

v

The comma category ES/T comes with canonical maps S ES/T T
p q

sending arrows f
to their domain and codomain respectively. The ordinary slice E/e is obtained by letting
S = E and T = {e} the discrete subcategory of E containing only e. Dually, the coslice Ee/
is obtained from setting S = {e} and T = E .

Note: Often the construction of a comma category is generalized further to arbitrary func-
tors S : S→ E and T : T→ E .

The assignment x 7→ EC/x from E to Cat is functorial in x. Indeed from f : x → y in E we
get a functor EC/x → EC/y sending g : c → x in the slice over x to g f : c → y in the slice
over y as displayed below:

c

x y

c′

h

g f g

f

g′
f g′

The desired restriction of E/e to a subcategory C is now EC/e. For an subcategory C of a
category E we functorially obtain the diagram dom : EC/e → C. An object e ∈ E is said to
be in the closure of a subcategoy C ↪→ E if e = colim(EC/e → C → E). A subcategoy C is
said to be dense in E if every object e is in the closure of C. 3.7 shows that every category is
dense in itself.

Using the Yoneda embedding we can consider C
y
↪−→ Psh(C) as a subcategory. With this we

can associate to a preasheaf x ∈ Psh(C) the category of
elements

category of elements Psh(C)C/x. Explicitly: the
objects of Psh(C)C/x are morphisms with representable domain f : yc→ x and a morphism
between f : yc→ x and f ′ : yc′ → x consist of an h : c→ c′ such that f ′y(h) = f .

3.8. Every presheaf x ∈ Psh(C) is the colimit of the diagram Psh(C)C/x
p−→ C

y−→ Psh(C).

In what follows we will often take colimits of diagrams like Psh(C)C/x
p−→ C

F−→ · with
F some functor. In this case we will write colim(Fp) as colim f :yc→x(F(c)), understanding
f to vary over the category Psh(C)C/x. The diagram above is of this type and with this
convention we write colim f :yc→x yc for the colimit.

Proof. Note that the functor Psh(C)C/x
yp−→ Psh(C) sends sends arrows f : yc → x to their

domain yc. The comma category Psh(C)C/x also comes equipped with another functor q :
Psh(C)C/x → {x} ⊂ Psh(C) sending f to its codomain, this functor is isomorphic to ∆(x) :
Psh(C)C/x → Psh(C). The arrows f themselves form a natural transformation between
these functors, yielding a cocone λ : yp⇒ ∆(x) with legs λ f = f : y ◦ p→ x.
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This cocone is λ is universal, indeed suppose we have another cocone µ : yp ⇒ ∆(y)
consisting of maps µ f : yc → y one for each f : yc → x. We produce a morphism of
presheaves Fµ : x → y levelwise: for each c ∈ C we define Fµ(c) : x(c) → y(c). Consider
f ∈ x(c), by Yoneda this corresponds to f : yc → x, an object of Psh(C)C/x. Then the leg
µ f : yc → y associated with f in the cocone corresponds, again by Yoneda, to an element
µ f ∈ Y(c) which will be the image s under Fµ(c). This defines the data of a morphism of
presheaves and the naturality of the cocone ensures that Fµ is a natural transformation.

Conversely, given a map of presheaves G : x → y we can extend the standard cocone λ to
a cone G over y by setting G f := G ◦ λ f = G ◦ f .

These operations are inverse to each other, indeed suppose we start with G : x → y a
morphism of presheaves, then construct G : Psh(C)C/x ⇒ ∆y, and from this produce FG :
x → y. Then G and FG are equal when G(c) and FG(c) are equal maps x(c)→ y(c) for each
c ∈ C. An f ∈ x(c) corresponds to f : yc → x and so G(c)( f ) = G ◦ f on the other hand
FG(c)( f ) = G f = G ◦ f .

Similarly we show that any cone µ : yp⇒ ∆y is equivalent to Fµ. Indeed Fµ f = Fµ ◦ f

This amounts to showing that µ f = Fµ f , but Fµ f = Fµ ◦ f = Fµ(c)( f ) = µ f .

We can now completely characterize the relation between C and Psh(C). Indeed the cat-
egory C is dense in Psh(C) along the Yoneda embedding. Conversely, every diagram in
C has a colimit in Psh(C) when extended along y. The following theorem shows that
y : C→ Psh(C) is the universal extension of C with these properties.

3.9. Given a small category C and a locally small E . For any functor F : C → E we can
define the evaluation at F functor

F∗ : E → Psh(C), F∗(e) =
(
c 7→ HomE (F(c), e)

)
.

If E admits small colimits then F∗ : E → Psh(C) has a left adjoint

F! : Psh(C)→ E , F!(x) = colim(Psh(C)C/x → C
F−→ E) = colim

f :yc→x
F(c)

such that the diagram on the left commutes

Psh(C)

C

E

F!

y

F

Psh(C)

E

F! F∗a

This shows that y : C ↪→ Psh(C) is the universal map from C into a cocomplete category:
Every other map F : C→ E induces a unique F! : Psh(C)→ E . We call the induced map the
F! the extension by

colimits
extension of F by colimits.
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Proof. Abusing notation we can write the colim(F ◦ dom) as colimyc→x F(yc). Then for arbi-
trary x ∈ Psh(C) and e ∈ E

Hom(F!(x), e) = HomE ( colim
f :yc→x

F(c), e) def of F!

= lim
f :yc→x

HomE (F(c), e) Hom preserves limits

= lim
f :yc→x

F∗(e)(c) def of F∗

= lim
f :yc→x

HomPsh(C)(yc, F∗(e)) Yoneda lemma

= HomPsh(C)(colim(Psh(C)C/x → C
y−→), F∗(e)) Hom preserves limits

= HomPsh(C)(x, F∗(e)) By 3.8.

On a representable yc we have F!(yc) = colim(Psh(C)C/yc → C
F−→ E) but idC is final in

Psh(C)C/yc and so F!(yc) = colim(1 c−→ C
F−→ E) ∼= F(c).

3.2 Presentable categories

Inside the category of sets we find the subcategory of finite sets Setfin. When working with
other categories such as topological spaces, groups of vector spaces we would like to find
an analogous notion of ’finite object’. These should not be literally finite, for example the
group Z and the vector space R2 should be finite in some other sense. The category of
groups and the category of vector spaces admit a forgetful-free adjunction to Set and the
previously mentioned objects are both free over a finite set. We could try to define ’finite
objects’ along these lines but this suffers from some deficiencies. Instead, taking a cue from
the definition of a compact space, the appropriate notion will be defined in terms of the
objects in the category in question. In a sense, we get a notion of ’finite with respect to the
objects of the category’ or ’consists of a finite amount of other objects of the category’. This
condition is known by a variety of names such as presentable or compact.

3.10. It will be helpful to recall the definition of a compact subspace and see how it trans-
lates to the categorical setting. We can associate to a space X a poset (i.e. category) of opens
O(X) and inclusions between opens. In categorical terms an open K ∈ O(X) is compact
precisely if we can associate to any diagram U• : I → O(X) such that K ↪→ colimi∈I Ui
a finite subcategory J ↪→ I such that K ↪→ colimi∈J Ui. One can easily verify that this is
equivalent to the standard definition. We can replace the diagram U• by another diagram
V• : Pfin(I) → O(X) such that VJ = colimi∈J Ui with the same colimit. Then the compact-
ness condition simplifies to: if K ↪→ colimJ VJ then there is a J ⊂fin I such that K ↪→ VJ .

3.11. The passage from U• to V• replaces an normal colimit with a so called directed colimit
which has close relation to filtered colimits and sequential colimits which we define in a
moment. To do this we first recall that for any cardinal κ

• A category is κ- small, filtered,
directed and
chain
categories

small if it has less then κ arrows, i.e. |MorD| < κ.
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• A category D is κ-filtered if any κ-small subcategory D′ has a cocone.

• A category D is κ-directed if any κ-small subcategory D′ ↪→ D has a colimiting cocone.

• A category is a κ-chain if the category is equivalent to the ordinal κ.

In the case of κ = ω we speak just of filtered and directed categories. An category colimit
over a diagram with shape D is called; κ-small if D is κ-small; κ-filtered if D is κ-filtered;
κ-directed if D is κ-directed; and κ-sequential if D is a κ-chain.

3.12. We will consider colimits for which the shapes are given by the class of categories
defined above, in this case we will call the colimit after the shape of its diagram. For
example a finitely filtered colimit in C will be a colimit of a diagram p : D → C where D is
finitely filtered.

• A category has κ-filtered colimits iff it has κ-directed colimits.

• A functor F between such categories preserves κ-filterd colimits iff it preserves κ-
directed colimits.

• A category has (finite) filtered colimits iff it has chain colimits, a functor F between
such categories preserves filtered colimits iff it preserves chain colimits.

3.13. An object A in a category C is said to be presentable
object

κ-presentable if the functor Hom(A,−) :
C→ Set preserves κ-filtered colimits. When speaking of presentable objects we sometimes
leave κ implicit.

3.14. This somewhat mysterious condition says that if we can produce an κ-filtered colimit
colimi Ai then Hom(A, colimi Ai) = colimi Hom(A, Ai). In other words if there is a map
f : A→ colimi Ai then f factors through an leg of the colimit.

3.15. The most familiar setting in which we encounter presentable objects is in the setting of
topology. Let O(X) be the poset of opens of a topological space X, then an open C ∈ O(X)
is compact precisely when it is presentable in O(X). It is for this reason that a presentable
object is also called a compact object.

Consider any cover {Ui}i∈I of C and write U =
⋃

i Ui. That U covers C means that there is
an inclusion C ↪→ U. The opens form a diagram U• : I → O(X) which we can replace by
the directed diagram V• : Pfin(I)→ O(X) such that VS =

⋃
i∈S Ui, this clearly has the same

colimit
⋃

S VS = U. Assuming that C is presentable yields an S such that C ↪→ ⋃
i∈S Ui, this

is precisely a finite cover over C showing that C is compact. Conversely if C is compact any
directed covering V• : J → O(X) produces is in particular a cover yielding a finite directed
subcover V• : J′ → O(X) where J′ is a finite subcategory of J. By assumption on J we find
a colimiting cone j ∈ J of J′ and then Vj covers C.

3.16. Intuitively we might say that we can break up finitely presentable objects C into a
finite amount of pieces by supplying a filtered diagram U• and a ’covering’ C → colimi Ui.
For example a set K is finitely presentable in the category of sets if it is finite.

3.17. An cocomplete category C is an presentable
category

κ-presentable if

(i) It has a small set of A of κ-presentable objects.
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(ii) Every object is an κ-directed colimit of objects in A.

An category is presentable if it is κ-presentable for some κ.

3.18. If C is an category with a full subcategory A, we let y|A denote the restriction of the
Yoneda functor to morphisms in A. To be precise

y|A(X) : A 7→ Hom(A, X), where A ∈ A

3.19. Let A be a small, full subcategory of C then y|A
(i) if full and faithful iff A is dense

(ii) preserves κ-directed colimits iff every object in A is presentable

Proof. [Adá+94, 1.26]

3.20. If C is κ-presentable and A is the subcateogy of κ-presentable objects then the above shows that
C is a reflexive subcategory of Psh(A).

We will use the following important properties about presentable categories

(i) By definition every presentable category has small colimits.

(ii) Since it is the reflexive localization of an presheaf category it also has all small limits.

(iii) Any cocontinuous functor between presentable categories has an right adjoint.

Proof. For (iii) see [Rie17, 4.6.17] and [Adá+94, 1.58].

3.3 Topoi

Topoi arose historically as the collection of étale maps of topological spaces. An étale map
over X is a contiunous map p : E → X which is a local homeomorphism. This means that
any point x ∈ E admits an open U ∈ O(X) such that x ∈ U and p|V is an homeomorphism
onto its image. Equivalently such an etalé map f corresponds to a functor from O(X) to
Set assigning to each open U the set of cross sections of p. Categorically these functors are
characterized by a gluing condition of open covers.

3.21. Given a topological space X write O(X) for the poset of opensposet of opens of X ordered by in-
clusion. Recall that a presheaf on O(X) is a functor O(X)op → Set, in this case we will
also speak of a presheaf on X understanding that we really mean the poset of opens. For
an presheaf F on X and x ∈ F(U) we will write x|V for F(i)(x) where i : V ↪→ X is the
canonical inclusion (if it exists).

3.22. Let F : O(X)op → Set be an presheaf on X and let {Ui}i∈I be a cover of X. Then any
x ∈ F(X) induces an family (xi)|i∈I with xi = x|Ui ∈ F(Ui) such that xi|Uj = xj|Ui for all
i, j ∈ I, such a family is called a compatible

family
compatible family.
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3.23. It is very useful to consider such a compatible family as a decomposition of x. A
common idea in topology and geometry is to decompose an global object into smaller local
objects and attempt to study objects that way. The sheaf condition below says that we can
go the other way, any collection of local data (i.e. compatible family) determines a unique
global datum. It is for this reason that topoi can be thought of as a bridge between local
and global reasoning.

3.24. A sheafsheaf on a topological space X is a presheaf F such that for any open cover {Ui}i∈I
and compatible family (xi)i∈I there is a unique amalgamation x ∈ F(X) such that xi = x|Ui .
We can separate this condition by saying that

(i) F is separated if each compatible family has at most one amalgamation

(ii) F is fibrant if each compatible family has at least one amalgamation

(iii) F is a sheaf if it is both separated and fibrant

3.25. The topos of
sheaves

topos of sheaves on a topological space X written Sh(X) is the collection of
sheaves on X

3.26. Any continuous map f : X → Y induces a pair of adjoint functors

Sh(X) Sh(Y)
f∗

f ∗

f ∗E E

X Y

p p

f

here the direct image functor f∗ is defined by f∗F : V 7→ F( f−1(V)). The inverse image
functor is better understand if we represent a sheaf G on Y by an étale map pG : E → Y,
then the f ∗G is represented by the red pullback as displayed above right.

3.27. It was then realized that this situation generalizes to arbitrary categories not just
categories of opens. Then the gluing conditions of open covers becomes can be encoded by
a Grothendieck topology.

3.28. A sievesieve S on c ∈ C is an downward closed collection of morphisms into c. So

(i) fi ∈ S then fi : ci → c.

(ii) if fi : ci → c ∈ S and g : d→ ci then g fi ∈ S.

Equivalently a sieve is a subfunctor of yc, i.e. a mono S→ yc.

3.29. For any collection of morphisms S into c we can consider S the sieve generated by
S. This is just the closure of S under precomposition or equivalently the smallest sieve
containing S.

3.30. Let S be a sieve on c and let f : d → c be a morphism then the pullback sieve f ∗S
on d are those maps in S factoring through f . This is just the pullback of S → yc along
y f : yd→ yc in Psh(C) which exists because it has finite limits.

3.31. An Grothendieck
topology

Grothendieck topology J assigns to every object c ∈ C a collection of sieves J(c)
which are said to be covering sieves. Subject to the following requirements

42



maximal sieve the maximal sieve of all maps into c, corresponding to the identity yc→ yc,
covers c.

pullback stability if S covers c and f : c′ → c is a morphism then f ∗S covers c′.

intersection two sieves S and T both cover c if and only if S ∩ T covers c, here S ∩ T is the
pullback in Psh(C).

transitivity if S is a sieve on c and let T := { fi : ci → c | f ∗i S covers ci} then if the sieve
generated by T covers c then also S covers c.

3.32. A sitesite (C, J) is category C together with a Grothendieck topology J.

3.33. Let J be a Grothendieck topology, then such a Grothendieck topology corresponds to
a collection of monomorphism J in Psh(C), i.e. every sieve on c determines a monomor-
phism into yc. Then a presheaf F in Psh(C) is an sheaf on (C, J) if it is an J -sheaf in the
sense of 2.36.

3.34. The category Sh(C, J) of sheaves on the site is equivalent to the full category of J -
sheaves. The inclusion Sh(C, J) ↪→ Psh(C) has a left adjoint called the associated sheaf
functor a : Psh(C)→ Sh(C, J). As a left adjoint a preserves all colimits, but it also preserves
all finite limits.

Proof. For the definition of a and the fact that it preserves finite limits see [MM12, V.3].

3.35. A topostopos is a category equivalent to the category of sheaves on a site. This means that
any topos is a left exact localization of a preasheaf category.

A morphism of topoi f : E → D or an geometric morphism is an adjoint pair

E D
f∗⊥
f ∗

such that f ∗ additionally preserves finite limits. Thus we get a category of topoi.

3.4 Logoi

Spaces are usually described by their point set topology, i.e. a set of points and a collection
of opens. The collection of opens form what is called a frame: a poset under inclusion with
arbitrary joins (unions) and finite meets (intersections) satisfying a distributivity law. What
is essential to note is that the spatial notion of continuity is then encoded contravariantly
by the lattice of opens. What we mean by this is that a map f : X → Y is continuous
precisely when f−1 : O(Y)→ O(X) is a well defined morphism of frames. This is part of a
rich duality between geometry and algebra which has many more extensions.

The theory of topoi are intended to be generalized spaces. This suggests that they might be
dually understood in an algebraic way. Following Joyal and Anel [AJ19] we call the dual
of the category of topoi the category of logoi and we will define them now.
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3.36. The limits of a category (when they exists) are always in some canonical relation with
another. For example the terminal object 1 is the unit of the binary product ×. Limits can
be compared this way because their universal properties have the same ‘handedness’.

In contrasts limits and colimits do not have to interact in any meaningful way. For example
the following ‘high school distributivity laws’ a la Tarski do not hold in a general category
with the appropriate limits and colimits.

• X× (A + B) ∼= X× A + X× B

• X× 0 ∼= 0

In the category Set of sets these laws do hold. Logoi can be characterized as categories for
which some distributively condition of limits over colimits hold.

3.37. The link with arithmetic in N can actually be made slightly more precise. Let Setfin be
the full subcategory of Set spanned by the finite sets. This category inherits finite limits and
colimits from Set. There is an cardinality map | − | : Setfin → N sending a set to its cardi-
nality. The structure (+,×, 0, 1, N) is an symmetric rig which is a symmetric ring without
negatives[nLa19]. Correspondingly the category Setfin can be given an approriate categori-
cal notion of a symmetric rig (+,×, 0, 1, Setfin). Then the cardinality map is a symmetric rig
morphism.

3.38. A category with all finite limits is also called left exact or lex categorylex category, this terminol-
ogy is justified because functors between abelian categories are left exact precisely when
they preserve finit limits. Similarly a category preserving small colimits is called cocom-
plete or a cc categorycc category for short. In this chapter we will often consider categories with finite
limits and all small colimits which can be abbreviated as lex cc

categories
lex cc categories.

3.39. It would be too naive to assert the laws like 3.36 as is. For one these laws do not relate
pullbacks and pushouts. Instead the proper generalization of the distributivity laws above
start with the following property.

3.40. In the following we will often consider an lex cc category E which will often remain
implicit. We will also refer to diagrams X• by which we mean a functor I → E sending
i 7→ Xi. The colimit will be often written as just X = colimi Xi. When we talk about
multiple such diagrams the category I is usually the same.

3.41. A lex cc category is said to have universal
colimits

universal colimits if any diagram X• over B satisfies

A×B (colim
i

Xi) ∼= colim
i

(A×B Xi)

3.42. This definition has the following reformulation. Let f : A→ B be some morphism in
a category with pullbacks, then the composition with f functor ( f ◦ −) : C/A → C/B has
an right adjoint, called the change of basechange of base functor, given by pullback

f ∗ : C/B → C/A, f ∗(X) = A×B X

A category has universal colimits if all base change functors preserve colimits. In the ex-
ample pictured below where X = colimi Xi this means that f ∗X = colimi f ∗Xi.
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f ∗X0 X0

f ∗X1 f ∗X2 X1 X2

f ∗X X

A B
f

3.43. A special case of this definition is when B = X such that the pullback is along a map
f : Y → X into the colimit. Pulling back f along all legs of the colimit X = colimi Xi = X
produces a diagram like the one below where Yi = f ∗Xi.

Y0 Y1

X0 X1 Y

X

p

f

All squares with side f are pullback squares. By the pullback pasting law the far end square
is also a pullback square, as indicated. That colimits are universal means that the colimit
of the induced diagram Y• is Y. The natural transformation Y• ⇒ X• given by the vertical
arrows in this diagram has the property that all naturality squares are pullback squares.
A natural transformation with this property is a cartesian

natural
transformation

cartesian natural transformation. The
property of descent which we will introduce now is a kind of reciprocal to this statement.

3.44. The category of
descent data

category of descent data Desc(X•) for diagram X• : I → E is the category of
cartesian transformations Y• ⇒ X• between diagrams I → E . This category is the limit of
the slice categories induced by the diagram

Desc(X•) = lim
i
CXi

To see this, notice that for any cone over C/X• is a family of diagrams Fi : Z → C/Xi
such

that any morphism i → j in the diagram relates diagrams by pullback C/Xj
→ C/Xi

. In
particular for every object z ∈ Z do we get a an cartesian functor i 7→ Fi(z) determining a
unique map Z→ limi C/Xi

.

3.45. There is an adjoint relation between the descent data of a diagram X• and an mor-
phism over the colimit Y → X.

E/X Desc(X•)

decX•

⊥

glueX•

Here dec decomposes an object over the slice as described in 3.43. The gluing map glue
takes the colimit of Y• and uses it’s universal property to obtain a unique map into X. This
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is an adjoint because if there is a map colimi Yi = Y → Z over X then this results in a maps
Y• → Z• cartesian over X•.

3.46. The colimits of a diagram X• are said to be of faithful descentfaithful descent if the decomposition
functor is fully faithful. This means that an object in the slice f : Y → X can be decomposed
as Yi = Y ×X Xi and then be glued together again as the colimit of the diagram such that
colimi Yi = Y.

faithful descent effective descent
dec is ff glue is ff

gluing after decomposition decomposition after gluing
is identity is identity

colimi(Y×X Xi) = Y Xi ×X (colimi Yi) = Yi

The colimits of a diagram X• are said to be of effective
descent

effective descent if the gluing map is fully
faithful. This means that if we glue an descent datum Y• ⇒ X• together into Y = colimi Yi
and then decompose it again we end up with the same descent datum.

3.47. An category with pullbacks has universal colimits iff it has faithful descent for all diagrams.

Proof. Faithful descent is just a special case of universal colimits, so we show the other
direction. Suppose that we have faithful descent for all diagrams and a diagram X• such
that the colimit X has a map X → B and a map f : A → B. We can form the pullback Y =
A×B X, then use faithfulness of the diagram X• the compose Y → X to the components
Yi → Xi. By composition of the pullback Yi is also the pullback of Xi along f

Yi Xi

Y X

A B

p

p

f

This means that A×B (colimi Xi) = Y = colimi(Y ×X Xi) = colimi(A×B Xi). So colimits
are universal.

3.48. Colimits of diagram X• have full descentfull descent if it’s colimits are of faithful and effective
descent. In this case the adjunction above becomes an equivalence of categories.

E/ colimi Xi
∼= lim

i
E/Xi

= Desc(X•)

The full descent condition for a diagram X• with colimit X can be concisely reformulated
as follows. Consider an natural transformation of diagrams α : Y• → X• of shape I.

obtained by adjoining a terminal object ∞ to I. Let the restricted α = α|I be an cartesian
transformation and let X∞ = colimi∈I Xi. Then the following are equivalent

(i) Y∞ is the colimit of colimi∈I Yi

(ii) the whole α is an cartesian transformation
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Proof. (ii)→ (i). Is faithfulness of descent. (i)→ (ii). Is effectivity of descent.

3.49. Intuitively the faithfulness of descent states that we can break up a large object, over
X, into pieces, over Xi, and reason about it locally. Conversely, effectivity of descent is
about our ability to assemble arbitrary objects from pieces, over Xi, into a whole, over X,
without forgetting what happened on the pieces. Consider the following cartesian diagram
in Set where σ swaps the elements.

{1, 2} {1, 2} t {1, 2} {1, 2}

{l} {a, b} {r}

[id,σ] [id,id]

The pushout of the lower diagram and upper diagram (i.e. the lower and upper row re-
spectively) are both one element sets yielding a map id : 1→ 1. Clearly we can not retrieve
the upper diagram by pulling back along this map. This shows that full descent fails in
categories like Set. This example is due to Mathieu Anel1.

3.50. It turns out that the colimits in Set that have effective descent are the ones that are
homotopically
discrete colimit

homotopically discrete. A colimit X• is homotopically discrete if the colimit in Set agrees
with the (homotopy) colimit in spaces. More precisely, write Disc : Set → Top for the
discrete embedding of sets into spaces. Then a colimit X• in Set is homotopicaly discrete if
Disc(colimi Xi) = colimi Disc(Xi) where the last colimit is the homotopical colimit.

3.51. The above colimits of the diagram above fail to be homotopically discrete, to see this
we can embed these sets discretely into Top and then replace under homotopy equivalence.
This yields the following cartesian diagram where all maps into I are endpoint inclusions
and σ is the automorphism of the interval swapping the edges.

I t I {0, 1} t {0, 1} I t I

I {0, 1} I

[i,σ◦i] [i,i]

The pushout now yields S1 and it’s double cover map. Moreover in this diagram all maps
can be recovered by (homotopy) pullback this double cover. This hints at the fact that in
spaces all (homotopy) colimits are of full effective descent.

3.52. Topoi are inherently spacial object. By the duality between topology and algebra it
has a dual representation as an algebraic object. Following Joyal & Anel [AJ19] we will call
this dual presentation a logos.

3.53. A logos is an lex cc category E with universal colimits and effective descent for dia-
grams with homotopically discrete colimit.

3.54. The virtue of the above definition is that morphisms between logoi can be easily
motivated. This is because descent is an internal property of a logos not requiring extra co-

1https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/
Anel-2019-05-2-HoTTEST.pdf
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herence conditions on functors. Therefore an logos
morphism

logos morphism is an left exact cocontinous
functor, in other words a functor preserving finite limits and small colimits.

3.55. Just as in a normal category the colimits are generated by coproducts and coequal-
izers the homotopically discrete colimits are generated by coproducts and coequalizers of
congruences. A congruence on X will be an internal equivalence relation i.e. an subject
R→ X× X such that

(i) Reflexivity: the diagonal ∆ : A→ A× A factors through R

(ii) Transitivity: The pullback R×A R factors through R as subject of A.

(iii) Symmetry: the map σ : R→ R is an isomorphism.

Intuitively such coequalizers are homotopically better behaved because ’identifying a and
b’ means ’adding a path between a and b’ in Top. If those identification are then not transi-
tive they add non trivial loops to the space. For more information see [AJ19].

3.56. An lex cc category has descent for homotopically discrete colimits precisely when it has descent
for coproducts and congruences.

Proof. See Topo-logie

3.57. The effective descent conditions of coproducts and congruences have a relation to the
Giraud axioms as the following theorems show.

3.58. An lex cc category E with universal colimits has

(i) effective descent for coproducts precisely when sums are disjoint.

(ii) effective descent for congruences precisely when equivalence relations are effective.

Proof. Let X• : I → E be a discrete diagram (i.e. I is a set) and let j ∈ I then define X j
i = Xi

if i = j and X j
i = ∅ otherwise and let τ j : X j

• → X• be the obvious cartesian transformation.
Then the colimit is Xj → X and effectivity of descent shows that the bottom right square is
a pullback for all i.

∅ Aj

Ai
⊔

A•

p

for the converse and other parts see [AJ19].

3.59. A key notion bridging the gap between topoi and logoi is that of presentability. Recall
from 3.20 that an category is presentable if it is a reflexive subcategory of some category
of presheaves. An topostopos by itself is just a presentable logos. A logos morphism between
presentable logoi is then a cocontinuous map between presentable categories and so has
a right adjoint. Then a morphism of topoi is such a right adjoint: an functor with a left
adjoint preserving finite limits. We can sum up this situation by saying that the category of
topoi is the opposite of the category of presentable logoi.
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3.60. In the presence of the presentability assumption there is an alternative axiomatiza-
tion of logoi due to Lawvere and Tierney. We begin by yet another reformulation of the
universality of colimits. After that we note that effectivity of descent for restricted descent
data can be formulated using classifying objects.

3.61. An locally cartesian closed category has universal colimits, if the category in question is
presentable the converse holds.

Proof. The first direction is trivial. Suppose that E is presentable then so are all it’s slices
A 7→ E/A. Since E has finite limits the assignment above becomes an functor sending a
map f : A → B to the change of base functor f ∗ : E/B → E/A. By assumption this map
preserves colimits. By the adjoint functor theorem for presentable categories this map has
a right adjoint so E is locally cartesian closed.

3.62. Let S be a class of morphisms in a category E and X• an diagram in E . Then the
category of S
descent data

category of S descent data Desc(X•, S) is the category of cartesian natural transformations
Y• ⇒ X• such that each component is in S. Similarly we let E/X |S be the category of all
morphisms in S with codomain X in E .

3.63. The adjunction above restricts to S if we require that S is closed under pullbacks

E/X |S Desc(X•, S)

decX•

⊥

glueX•

In this case we can speak of faithful/effective descent for S morphisms.

3.64. Let E be a category with pullbacks. Then a S-classifierS-classifier for a class of morphisms S is
an object US with a map pS : ŨS → US in S such that the functor X 7→ E/X |S is represented
by Hom(−,US). In other words (p,US) is the terminal object in the category of elements∫

X∈E E/X |S. This means that isomorphism classes of S-map f : Y → X over X correspond
bijectively with maps χ f : X → Us and χ∗f p is isomorphic to f .

3.65. Let E be an lex cc category and let S be a pullback stable class of maps. If E has an S-classifier
then it has effective descent for S morphisms.

Proof. To show that we have effective descent, suppose that we have a S-cartesian natural
transformation fi : Yi → Xi. Then by assumption there are maps χi : Xi → US such that
χ∗i p ∼= f . These maps form a X• cocone over US and so induce a unique map χ : X → US
which yield an S-map f : Z → X displayed below left which is the putative colimit. In the
diagram below all squares a pullback squares.
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Y2

Y1 Z ŨS

X2

X1 X US

f2

f1
f

pSχ2

χ1

χ

If we decompose f : Z → X along the legs Xi → X we get Zi → Xi. By the pullback
pasting law these are isomorphic to fi : Yi → Xi. And by universality of colimits they glue
back into Z. In other words Z is isomorphic to the colimit of Y•.

3.66. A category with finite limits has an subobject
classifier

subobject classifier Ω if it has an Smono-classifier,
where Smono is the class of monomorphisms. NB: Monomorphisms are always pullback
stable.

3.67. The universal subobject is a map out of the terminal object 1 traditionally called true :
1→ Ω.

3.68. The Lawvere-Tierney conception of a logos, or an elementary
logos

elementary logos, is an locally
cartesian closed category with a subobject classifier.

3.69. Under presentability the Lawver-Tierney definition is equivalent to the earlier defi-
nitions, see [AJ19] and [MM12].

3.70. There is one final definition of a logos which we wish to give. Recall that a presentable
category is an reflective localization of an presheaf category. Then an presentable category
is an logos if the reflector R is left exact. In fact the converse also holds, presentable logoi
are exactly left exact localizations of presheaf categories, but we will not show this.

3.71. Let S be an lex cc category with a reflective subcategory i : E → S such that the reflector
R : S → E is left exact. Then

(i) X• is of effective colimit in E if iX• is effective in S.

(ii) X• is of faithful descent in E if iX• is of faithful descent in S.

Proof. The reflective subcategory E inherits all colimits and finite limits from S where the
colimits are computed by applying the reflector (see 2.6). (i). Suppose we have an cartesian
transformation Y• ⇒ X• in E then this is also a cartesian transformation in S because i pre-
serves limits. Then if colimits for iX• have effective descent in S this extends to an cartesian
transformation of colimit diagrams iY.

• ⇒ iX.
• . Applying the reflector yields an cartesian

diagram with parts as displayed below left. But because i a R is an reflective subcategory
Ri ∼= id and the reflector of the colimit is just the colimit R(colimi iYi) = colimi Yi. So then
Xi is an effective colimit in E .
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Ri(Yi) R(colimi iYi)

Ri(Xi) R(colimi iXi)

iYi iY

Z

iXi iX∞

colimi iXi

p

φ

(ii). Suppose that we have an diagram X• with colimit X∞ = colimi Xi and a map f :
Y → X∞, by decomposition (pullback) we get an diagram Yi = Y ×X Xi. Then under
the inclusion i into S this becomes the diagram displayed above right were the far square
is a pullback. We form the colimit of iX• in S which induces a map into iX∞. We take
the pullback along this map yielding Z. By the universal property of the pullback we get
maps iYi → Z. By the pullback pasting law all triangles commute. This means we have
an cartesian transformation in S over the colimit of iX•, now if iXi colimits are of faithful
descent we get Z = colimi iYi. After reflecting back into E the map φ turns into the identity
but since R preserves colimits this means that R(colimi iYi) = R(Z) = Ri(Y) = Y and so Y
is the colimit.

3.72. Suppose that S is an logos and let E be an left exact reflective localization, then E is also an
logos.

The above is easily seen by apply the preceding lemma 3.71. What is now left to show is
that presheaf categories are logoi.

3.73. The following are logoi

(i) The category Set of sets.

(ii) For any small category C the category of presheaves Psh(C).

Proof. (i) In Set colimits are universal because it is locally cartesian closed. Then it enough to
show disjointness of sums and effectivity of equivalence relations. These are both standard
facts (see [MM12, Appendix]).

(ii) Suppose that X• and Y• are I. diagrams in Psh(C) with a natural transformation α :
Y• ⇒ X• restricting to an cartesian transformation on I and that X• is a colimit diagram.
Then for each c ∈ C there is a transformation α(c) : Y•(c) ⇒ X•(C) in Set. Since (co)limits
are computed pointwise we get X∞(c) = colimi Xi(c) and α(c) also restricts to an cartesian
transformation. We conclude that Y∞(c) = colimi Yi(c) iff α(c) is cartesian. But α(c)’s are all
cartesian iff α is and for all Y∞(c) = colimi Yi(c) iff Y∞ = colimi Yi. In particular the presheaf
category inherits universal limits and effective descent of homotopically discrete colimits
from Set.
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Part II

Homotopy mathematics
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Let’s go back to Klein’s erlangen program from the introduction. Remember that he pro-
poses to study mathematical objects using ambient models equiped with a group of sym-
metries under which our statement are to be invariant. The principle deficiency with as-
sociating only a group to capture invariants is that the objects might have much richer
collection of symmetries. More precisely, there might be multiple non equal symmetries
with the same beginning and end points. These symmetries can then be potentially con-
nected with higher symmetries which do not have to be unique and so on. This lead to a
notion of an ∞-group or, slightly generalized, to an ∞-groupoid. We cite Shulman:

This notion may seem very abstruse, but over the past few decades ∞-groupoids
have risen to a central role in mathematics and even physics, starting from
algebraic topology and metastasizing outwards into commutative algebra, al-
gebraic geometry, differential geometry, gauge field theory, computer science,
logic, and even combinatorics. It turns out to be very common that two things
can be equal in more than one way.

An paradigmic example of objects with higher identifications is the homotopy theory of
spaces which we will recall in chapter 4. To capture the ’symmetries’ of topological spaces
we introduce the theory of homotopical categories in chapter 5. Since these symmetries
do not form a simple group it will not be enough to simply quotient the category by these
symmetries. Instead we have to work with the category and it’s symmetries directly. If
topological spaces with their weak equivalences fit in the picture described above they are
the analytic model of some theory. Conjecturally this underlying theory is precisely the the-
ory of ∞-groupoids. Describing this theory directly, i.e. synthetically, is in a sense outside
of the power of 20th century algebraic methods. Actually it is believed that these methods
do exists and that they are given by homotopy type theory. However this synthetic theory
still lacks an satisfactory justification in ordinary set based mathematics2. Consequently
the only way of working with this theory is through the models. To aid this program we
introduce in chapter 6 simplicial sets which provide another model of the underlying the-
ory.

The category theory we studied in part I has an intimate connection to sets. We will see
in chapter 7 that ordinary category theory can be generalized to enriched category theory.
We then immediately move on to considering categories enriched in ∞-groupoids which
are supposed to be (∞, 1)-categories. If ordinary categories organize models of algebraic
theories then (∞, 1)-categories organize models of theories under an ∞-groupoid of sym-
metries. Of course, just as with ∞-groupoids, there is no clear notion of an (∞, 1)-category
and we instead have to study them through models which we will introduce in 7.2.

2Recently Mike Shulman provided a crucial piece of this puzzle, see [Shu19]
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Chapter 4

Classical homotopy theory

In the category of topological spaces the notion of isomorphism is inadequate to capture
our intuition about which spaces should be somehow ‘equivalent’. In particular, a space
A and its ‘thickening’ X, such as a point A = {x ∈ R2 | |x| = 0} and a small disk
X = {x ∈ R2 | |x| ≤ ε} should be equivalent, but there is no homeomorphism between
them. We can however envision making the disk X smaller and smaller in a time span
t ∈ [0, 1] until at t = 1 the disk is squeezed down to the point A. The interval [0, 1] will also
be written I and plays a vital role in homotopy theory.

This idea is captured by the notion of a deformation
retract

deformation retract from a space X onto the sub-
space A ⊂ X. Such a deformation retract is a family of maps ft : X → X such that f0 = idX
and f1(X) = A which is continuous as a map [0, 1]× X → X, (t, x) 7→ ft(x). If there is a
deformation retract of a space X onto A we say that A is a deformation retract of X and
write X  A. To serve as a notion of equivalence on spaces we would need that X  A
is an equivalence relation, it is however only reflexive and transitive. Fortunately enough,
the symmetric closure of  is easy enough to describe explicitly. In order to do this, we
will need the central notion of homotopy.

4.1. A (left) homotopy(left) homotopy is a family of maps ft : X → Y with t ∈ [0, 1] such that I × X →
Y, (t, x) 7→ ft(x) is continuous. We say two maps g, h : X → Y are homotopic and write
g ∼ h if there is a homotopy ft with g = f0 and h = f1. Now a map between f : A → B
is a homotopy

equivalence
homotopy equivalence if there is a g : B → A such that f g ∼ id and g f ∼ id. If two

spaces A and B are connected by a homotopy equivalence they are said to be homotopy
equivalent, we write A ' B.

4.2. Note that A is a deformation retract of X iff the inclusion i : A → X is an homotopy
equivalence. In fact homotopy equivalence is in the symmetric closure of deformation
retracts: For any A ' B there is a space C such that A  C B (see [Hat00]).

4.3. The structure of the interval I shows that homotopy is an equivalence relation on
Hom(X, Y) the set of maps between X and Y. Consequently we can form Hom(X, Y)/∼ the
set of homotopy classes of maps.

54



4.4. Suppose we have a left homotopy H : X × I → Y. Fixing a point x ∈ X we obtain
a mapping Hx : t 7→ H(x, t) to paths I → Y. The space of such maps written Y I can be
topologized using the compact open topology, with this the assignment x 7→ Hx becomes
continuous.

Hom(X× I, Y) Hom(X, Y I)

H x 7→ Hx

∼

∈ ∈ X× I Y I × I Y
( f ,id) ε

Since the space I is locally compact the evaluation map ε : I×Y I → Y is continuous. Using
this we get an inverse to the mapping above, sending a map h : X → Y I to the composite
displayed above right. This implies that a map h : X → Y I is ’just as good’ as a homotopy
H : X× I → Y, in particular there is an bijection between such maps displayed above left.

4.5. A (right) homotopy from g to g′ is a map h : X → Y I such that for each x the path
ε(h(x), idI) : I → Y is a path from g(x) to g′(x). We will often identify an element of
Y I with the map I → X that it represents, with this we can just write that h(x) is a path
between g(x) and g′(x).

4.6. For any morphism f : A → B the natural action by pre- and postcomposition of morphisms
respects ∼.

Proof. That post composition respects ∼ is obvious since an homotopy g ∼ g′ : X → A is
represented by a map I × X → A. A left homotopy f ∼ f ′ : B → Y can be equivalently
presented by a right homotopy h : B→ Y I and so we get that postcomposition also respects
∼.

4.7. By the above discussion we can form the naive homotopy category of spaces hTop

with objects the same objects as Top such that HomhTop(A, B) := Hom(A, B)/∼.

4.8. Homotopy equivalence is an equivalence relation on the objects of Top.

Proof. Reflexivity and symmetry are trivial. For transitivity, if A ' B and B ' C by the
equivalences displayed below

A B C
f+

f−

g+

g−

then since composition respects ∼ we have g+ f+ f−g− ∼ g+idBg− ∼ g+g− ∼ idC and
f−g−g+ f+ ∼ f−idB f+ ∼ f− f+ ∼ idA so A ' C.

4.9. There is an functor Γ : Top → Set sending a space to its underlying set of points. This
functor is represented by 1, the space consisting of just a point, so that Γ(X) = Hom(1, X).

4.10. The functor Γ : Top → Set has both a left and a right adjoint Disc a Γ a coDisc which
represent the minimal and maximal ways of topologizing a space. Concretely Disc(S)
equips a set S with the discrete

topology
discrete topology where the topology is P(S). Dually coDisc(S)

equips S with the codiscrete topology given {∅, S}, i.e. all points are close together. We
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will sometimes pretend that a set is a space, then we will always consider it equipped with
the discrete topology.

4.1 Homotopy groups and weak equivalences

With this new notion of equivalence we might ask if one can classify all spaces up to ho-
motopy, or at least find invariants to tell us when spaces are not homotopy equivalent. The
most important such invariant are the homotopy groupoids πn(X) for n ≥ 0 of a space X.
We will first define the collection of path components of a space X. Then the homotopy
groupoids will be defined using the notion of path components of a space.

4.11. Given two points x, y ∈ X a homotopy between the induced x, y : 1 → X is a pathpath,
this is a map p : I → Y such that p(0) = x and p(1) = y. If there is such a path we write
x path∼ y, which is just the homotopy relation ∼ for points. Since ∼ is an equivalence relation,
so is path∼ and we can form the quotient π0(X) := X/ path∼ of path connected

components
path connected components of

the space X.

4.12. In order to define the higher homotopy groupoids of a space it it useful to define the
category of relative spaces Toprel.

• A relative space (X, X0) is a space X ∈ Top with a subspace X0 ⊂ X.

• A relative map between relative spaces f : (X, X0) → (Y, Y0) is a map f : X → Y
such that f (X0) ⊂ Y0. Write Hom(X, X0; Y, Y0) for the set of relative maps between
(X, X0) and (Y, Y0)

• A relative homotopy between f , g : (X, X0) → (Y, Y0) is an homotopy ht : X → Y
such that ht is a relative map (X, X0)→ (Y, Y0) for all t, in this case we will also write
f ∼ g.

4.13. A relative space X0 ⊂ X such that X0 is just a point {x0} is called a pointed spacepointed space
and x0 is called the basepoint. The full category spanned by the pointed spaces is called
the category of pointed spaces Top∗. In fact Top∗ ↪→ Top is a reflexive subcategory where
the reflector L sends X 7→ (X t {∗}, {∗}) with the coproduct topology.

4.14. Let Hom(X, X0; Y, Y0)/∼ be the set of relative maps Hom(X, X0; Y, Y0) quotiented by
the relative homotopy relation, this is also a functorial with respect to pre- and postcom-
position for the same reason the non relative version is.

The final requirement for defining the higher homotopy groupoids will be the higher anal-
ogous of the interval I. Just as the path components of space are determined by the functor
Hom(I,−) so will the higher homotopy groupoids be determined by maps Hom(In,−)
where In are defined as follows.

4.15. For each n ≥ 0 let In be the n fold cartesian product of the standard interval [0, 1] ∈
Top. Let the boundary ∂In for n > 0 be the topological boundary of this space, for n = 0
let ∂I0 := ∅. In both cases explicitly given by those x ∈ In with at least one coordinate
0 < i ≤ n such that xi ∈ {0, 1}.
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Other important spaces for homotopy theory are the n-spheres Sn and n-disks Dn defined
below. Note that D0 = {0} and S−1 = ∅, so we have In ∼= Dn and ∂In ∼= Sn−1.

Sn−1 := {x ∈ Rn | |x| = 1}, Dn := {x ∈ Rn | |x| ≤ 1}, for n ≥ 0

4.16. If x, y ∈ π0(X) and there is an isomorphism Hom(In, ∂In; X, x)/∼ ∼= Hom(In, ∂In; X, y)/∼
for n ≥ 1.

Proof. Full proof in [Hat00, Section 4.1]

4.17. For a pointed space (X, x) the nth homotopy
group

nth homotopy group πn(X, x) is the homotopy equiv-
alence classes of pointed maps (In, ∂In)→ (X, x).

The nth homotopy
groupoid

nth homotopy groupoid of a space X is a category πn(X) with an object [x] for each
[x] ∈ π0(x), and for each [x], [y] ∈ π0(X) let

Hom([x], [y]) =

∅ if [x] 6= [y]
πn(X, x) if [x] = [y]

In other words πn(X) records for every path connected component [x] ∈ π0(X) the homo-
topy group πn(X, x). Theorem 4.16 shows that the homotopy groupoids are well defined.
The notation π0(X) represents both the set of path components and the 0th homotopy
groupoid, this notation is consistent since π0(X) is discrete as a groupoid.

4.18. If the space X is path connected the notions of nth homotopy groupoid and nth ho-
motopy group (choosing any basepoint) coincide. Since a space can always be decomposed
into its path components and all homotopical notions can then be defined ‘path component
wise’ it is sufficient to study path connected spaces. This is why historically there was more
emphasis on homotopy groups and not homotopy groupoids.

The homotopy groupoids of a space are very powerful invariants used to answer many
practical questions about spaces. They however fail to detect all homotopy equivalent
spaces, usually this is due to singularities where lines come arbitrarily close without form-
ing a path. Since these spaces are often seen as pathologies this failure is not much of an
issue in practice. Instead the homotopy groupoids induce their own notion of equivalence
which often supersedes the notion of homotopy equivalence.

4.19. A map f : X → Y between spaces is a weak
(homotopy)
equivalence

weak (homotopy) equivalence if the induced
πn(X)→ πn(Y) is an equivalence of groupoids for each n ∈N.

4.20. The homotopy groupoids can be packaged up into one functor π : Top→ GpdN where
N is discrete. This assigning to a space X all of its fundamental groupoids {πn(X)}. Two
objects F and G of GpdN and G are equivalent if for each n ∈N the groupoid F(n) ' G(n).
This means that the kernel ker(π) are precisely the weak equivalences.
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4.2 CW-complexes, fibrations and cofibrations

Modern homotopy theory is often the study of spaces up to weak equivalence, or, perhaps
more accurately, the study of spaces where weak equivalence and homotopy equivalence
coincides. These spaces are the CW-complexes which we will define now.

4.21. Suppose we have a space X and a map φ : Sn−1 → X we can attach an n-cell along φ
to X using the pushout displayed below left with the boundary inclusion Sn−1 ↪→ Dn.

Sn−1 X

Dn X′
i

φ ∑i∈I Sn−1 X

∑i∈I Dn X′
∑i∈I i

[φi ]i∈I

In fact we can attach multiple such n-cells at once. A set I of attaching maps φi : Sn−1 → X
for i ∈ I can be collected using the coproduct [φi]i∈I : ∑i∈I Sn−1 → X, then attached using
the pushout displayed above right.

4.22. A CW-complexCW-complex or cell complex is a space X that can be obtained by the following
method: Start with the empty space X−1 := ∅. Suppose Xn−1 is constructed. Then there
is a set Jn of attaching maps φi : Sn−1 → Xn−1 for n-cells onto Xn−1 for each i ∈ Jn. The
space Xn is obtained by attaching the n-cells as displayed above and comes with inclusion
i : Xn−1 → Xn. Then X is the union of all Xn, or in more categorical terms X = colimn∈N Xn.

Intuitively the nth homotopy groupoid of a space X characterizes the maps In → X such
that ∂In 7→ {x} some fixed x ∈ X up to homotopy. Since In ∼= Dn and ∂In ∼= Sn−1 we
see a close relation with the CW-complexes: in a sense a CW-complex consists only of such
maps. Therefore it is reasonable to suspect that the homotopy groupoids can ‘detect all
there is to know’ about a CW-complex up to homotopy. Indeed this is the context of the
following theorem.

4.23. For CW-complexes X and Y if there is an weak equivalence f : X → Y (i.e. a map such that
π( f ) is an isomorphism) then f is an homotopy equivalence. Whitehead

theorem
Proof. See Hatcher [Hat00]

4.24. The map ∂ : {0} ↪→ I including an endpoint into the interval is an homotopy equiv-
alence by σ : I → {0}. This map determines the following structure on the category Top.

• For any space Y there is a homotopy equivalence Y∂ : Y I → Y{0} ∼= Y. The collection
of these maps are called the generating trivial Hurewicz fibrations.

• For any space X there is a homotopy equivalence A× ∂ : A ∼= A× {0} → A× I. The
collection of these maps are called the generating trivial Hurewicz cofibrations.

4.25. A Hurewicz
cofibration

Hurewicz cofibration is a map i : A → X having the right lifting property against
the generating trivial Hurewicz fibrations. Dually, a Hurewicz

fibration
Hurewicz fibration is a map p : E→ B

having the left lifting property against the generating trivial Hurewicz cofibrations.
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A Y I

X Y{0}
i

F

Y∂

F0

F̃

A× {0} E

A× I B

A×∂

F0

p

F

F̃

In the above diagrams F is a homotopy, F0 is a extension of one end of the homotopy, and
the lift F̃ extends F and F0.

4.26. From now on it will be good to restrict attention to a better behaved subcategory of
Top. From now on we will work with the subcategory of compactly generated and weakly
Hausdorff spaces which we will just call Top.

• A weakly Hausdorff space X has the property that the image of a compact space A
under i : A→ X is closed in X, indeed any Hausdorff space is weakly Hausdorff.

• A space X is compactly generated if its topology is determined by its compact sub-
spaces K ⊂ X. In particular A ⊂ X is closed (open) iff A is closed (open) in K for all
compact K ⊂ X.

This class of spaces contains nearly any non pathological space we care about, among them
all topological manifolds and every CW-complex.

4.27. It it not hard to check that any homeomorphism (and so identity) is a fibration, a
cofibration and a homotopy equivalence. Moreover the fibrations, cofibrations and homo-
topy equivalences are closed under composition, with this we have the following wide
subcategories of Top:

• hEq of homotopy equivalences, an homotopy equivalence is drawn as A B∼

• hCof of cofibrations, an cofibration is drawn with hook A B

• hFib of fibrations, an fibration is drawn with double head A B

4.28. For an map f : A→ B the mapping
cylinder

mapping cylinder of f given by the pushout below left

A B

I × A Cyl( f )

f

∂×A
p

Path( f ) A

BI B

p f

B∂

dually the mapping path
space

mapping path space Path( f ) is given by the pullback above right.

4.29. We get the following very pleasing duality. A map is called a trivial fibration if it is
in (Ch)

�, i.e. it has the right lifting property against the cofibrations. Similarly a map is
called trivial cofibration if it is in �(Fh). Then

• (Ch)
� = Eh ∩ Fh

• Eh ∩ Ch = �(Fh)

this means that (C,Eh ∩ Fh) and (Fh ∩ Eh,C) are weak factorization systems. In fact these
factorizations are functorial and can be described explicitly. Every map f : A → B factors
through the mapping cylinder and the mapping path space as displayed below.
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Path( f )

A B

Cyl( f )

f
∼

∼

4.30. Note: for this duality to work to work the restriction Top to weakly Hausdorff com-
pactly generated spaces is essentially. Indeed without it the cofibrations need to be replaced
with closed cofibrations, i.e cofibrations i : A→ X such that i(A) is closed in X. In our Top

every cofibration is closed due to the compactly generated property.
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Chapter 5

Homotopical category theory

Topological considerations lead us to define the homotopy relation ∼ between maps in
Top. Intuitively we would like to ‘quotient’ the morphisms of Top by this relation. One can
do this to obtain the naive homotopy category hTop with the objects of Top and homotopy
classes of maps HomhTop(X, Y). In this chapter we will give an more abstract category
theoretical investigation of this situation.

5.1 Categories with a homotopy relation

5.1. A homotopy
relation

homotopy relation ∼ on a category C consists of an equivalence relation on the
morphisms of C such that f ∼ g implies that f and g are parallel arrows in C and such that
∼ respects composition

• If f ∼ g with f , g : A→ B and h : B→ C then h f ∼ hg.

• If f ∼ g with f , g : B→ C and h : A→ B then f h ∼ gh.

5.2. Given a category C with a homotopy relation ∼ the native
homotopy
category

native homotopy category hC is
the category with the same objects as C but where the morphisms are quotiented by the
homotopy relation. One easily checks that this is a category. This construction comes with
a bijective-on-objects quotient map γ : C → hC. The category hC together with the map
γ : C → hC is called the homotopy localization of C by ∼, usually ∼ is understood from
context. The homotopy class of f , i.e. its image under γ, is also written [ f ].

5.3. The above construction enjoys the following universal property, let C be a category
with homotopy relation ∼ then for every functor F such that f ∼ g → F( f ) = F(g) there
is a unique F! rendering the diagram below commutative.

C D

hC

F

γ
F!
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5.4. Every functor F : C→ D yields an induced
homotopy
relation

induced homotopy relation ∼F on C where f ∼F g
iff F( f ) = F(g). Functionality and the properties of composition in D ensure that this is
indeed an homotopy relation.

5.5. Consider a reflective subcategory i : C ↪→ E with reflector R : E → C, then consider
the naive homootopy category hE obtained by the induced homotopy relation ∼R. By the
universal property we obtain a map R! : hE → C such that R!γ = R. The functor R! is

• essentially surjective: any object c ∈ C produces the object γi(c) ∈ hE and R!γi(c) =
Ri(c) = c.

• faithful: given f in C the map γi( f ) in hE satisfies R!γi( f ) = Ri( f ) = f .

• full: if [ f ] 6= [g] in hE then by definition R( f ) 6= R(g) and so R!([ f ]) = R( f ) 6=
R(g) = R!([g]).

So a reflective subcategory is equivalent to the naive homotopy category obtained from the
induced homotopy relation of its reflector.

5.6. Consider a convenient category of topological spaces Top such that right homotopy
and left homotopy coincide. Left homotopy between of maps X → Y is represented by I ×
X → Y so left homotopy preserves postcomposition. Similarly right homotopy preserves
precomposition. Write ∼h for left/right homotopy between maps then this is a homotopy
relation in the sense of this chapter and so hTop is a homotopy localization.

5.7. Consider a category C with a homotopy relation ∼, we say that f : A → B is an
homotopy
equivalence

homotopy equivalence if the following equivalent properties hold

(i) The homotopy class [ f ] is an isomorphism in hC

(ii) There is a g in C such that f g ∼ id and g f ∼ id.

Proof of equivalence. If [ f ] is an isomorphism then it has an inverse [ f ]−1 which is a homo-
topy class of maps in C pick a representative g such that [g] = f−1 then this is its homotopy
inverse. Conversely f g ∼ id and g f ∼ id means that [ f ][g] = id and [g][ f ] = id, hence [ f ] is
an isomorphism.

5.8. Every category C can be given the minimal homotopy relation where f ∼ g iff f = g.
This is the homotopy relation induced by the identity functor and in particular hC ∼= C.

5.9. Consider two categories C and D and a functor F : C→ D then F is said to be homotopy
invariant if the following equivalent properties hold

• Given f ∼ g in C then F( f ) ∼ F(g) in D

• The composition γDF factors through hC as displayed below.

C D

hC hD

F

γC γD
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Proof. Clearly if (i) holds then γDF sends homotopic maps to identical maps so by the
universal property of hC it factors as required by (ii). Conversely if (ii) and we are given
f ∼ g then [ f ] = [g] in hC and so γDF( f ) = F!([ f ]) = F!([g]) = γDF(g) but then F( f ) ∼
F(g).

5.10. In this sense, the homotopy category with the homotopy localizers can be seen as a
convenient way to detect if functors are homotopy invariant. This should be compared to
the way the homotopy groups of a space can be used to detect if a map is a weak homotopy
equivalence. However, just as a a map between the homotopy groups of a space does not
determine a map between the spaces, a map between homotopy categories also does not
determine homotopy invariant maps.

5.2 Homotopical categories

In a sense homotopy invariant functors do not capture all situations where we want to de-
scribe invariant constructions. What we often really want is to replace ‘equivalent’ objects.
Clearly every functor invariant under homotopy equivalence is invariant under changing
homotopy equivalent objects. The problem is that sometimes we have a notion of equiv-
alence that does not arise out of a homotopy relation. This usually means that we have
a functor into a category of invariants where we decide equivalences in. In this case we
work with a category and a wide subcategory of weak equivalences that ‘behave like the
isomorphisms of a category’.

5.11. A homotopical
category

homotopical category is a category C with a wide subcategory W of weak equiv-
alences such that W is the kernel of some functor out of C, i.e. there is a category D and a
functor F : C→ D such that f ∈ W iff F( f ) is an isomorphism in D. A morphism f ∈ W is
called a weak

equivalence
weak equivalence.

The reference to ‘some functor F’ in this definition might look a bit uneasy. Fortunately
every subcategory of weak equivalences determines such a functor canonically, as the fol-
lowing shows:

5.12. Recall that for any set of morphisms W of a category C there is a category C[W−1] and
a canonical functor γ : C→ C[W−1] localizing at W, i.e. all f ∈ W become isomorphisms.
This functor has the universal property that any functor F : C→ D localizing at W induces
a unique F! : C[W−1]→ D making the following diagram commute.

C D

C[W−1]

γ

F

F!

5.13. For any class of morphisms W the functor γ : C → C[W−1] factors any other functor
inverting all morphisms in W. Let W denote the kernel of γ, then any functor localizing
at W also necessarily localizes at W. In other words W is the smallest category of weak
equivalences on C containing all the morphisms W. In this case we say that W generates
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the weak equivalences W. A category C with weak equivalences W′ is of small generation
if there is a (small) set W such that W′ = W.

5.14. When C is a homotopical category with weak equivalences W we write Ho(C) for
C[W−1] and call it the homotopy

category
homotopy category of C. The weak equivalences are usually left

implicit when speaking of a homotopical category. Just as for categories with homotopies
we can equip any ordinary category with a minimal homotopical structure, this is equiv-
alently the kernel of the identity functor or the weak equivalences generated by the empty
set.

5.15. A functor F : C→ D between homotopical categories is called homotopical if it sends
weak equivalences in C to weak equivalences in D.

5.16. Just as for a category with homotopies considered above the homotopy category can
be used to detect when functors are homotopical. Indeed, a functor F : C → D is homo-
topical iff if factors as follows.

C D

Ho(C) Ho(D)

γ

F

γ

5.17. Given a category D and a homotopical category C with a functor F : D → C there
is a canonical choice of weak equivalences on D such that F becomes homotopical. This
defines a morphism f ∈ D to be a weak equivalence iff F( f ) is a weak equivalence in C.
This indeed defines a subcategory of weak equivalence, it is the kernel of γF : D→ Ho(C).
This shows that we can induce homotopical structures (backwards) over functors.

5.18. The main motivation for introducing homotopical categories is the following: Let Topq
be the category Top with the weak equivalences from 4.19. This is a homotopical category
by the functor π from 4.20 sending a space to its (graded) homotopy groupoids. Recall that
this means that a morphism f : A→ B is a weak equivalence if πn( f ) : πn(A)→ πn(B) is
an isomorphism of groupoids for all n ≥ 0.

5.19. Any category of weak equivalences W satisfies the two-out-of-six
property

two-out-of-six property: given
three composable arrows displayed below left with their compositions, if g f and hg in W
then f , g, h also in W (hence so is hg f ).

· ·

· ·

f

g f g hg

h

· ·

·

f

g f g

It also satisfies the two-out-of-tree property: given two composable arrows f and g such
that g f ∈ W then f ∈ W iff g ∈ W. This is an easy consequence of the two-out-of-six
property.

Proof. We work in Ho(C) and show that g has an inverse there. By assumption there are
inverses (g f )−1 of (hg)−1 now (hg)−1h is left inverse of g and f (g f )−1 is a right inverse of
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f so then g is an isomorphism. Now clearly if g f and g are isomorphisms in Ho(C) then so
is f and similarly for h.

5.20. Conversely not every wide subcategory satisfying the two-out-of-six property defines
a subcategory of weak equivalences. Instead it should satisfy even more elaborate closure
properties enjoyed by isomorphisms, the two-out-of-three and two-out-of-six properties
can be seen as the first rungs in this ladder. In practice the two-out-of-six property repre-
sents a convenient observation to make.

5.21. Suppose we have a category C with homotopy relation∼ and an homotopy invariant
functor F : C → D. Then the homotopy equivalences of C are included in ker(F), in other
words ker(F) are weak equivalences on C coarser than the homotopy equivalences induced
by ∼.

Proof. Consider a homotopy equivalence f with homotopy inverse g, i.e. f g ∼ id and
g f ∼ id. Then F( f g) = F(id) = id and F(g f ) = F(id) = id are isomorphism, so g f and f g
are weak equivalences hence by two-out-of-six so are f and g.

· ·

· ·

f

g f g f g

f

5.22. For a category C with homotopy relation the homotopy equivalences are exactly the
maps sent to isomorphisms in hC we conclude that hC ∼= Ho(C) where the weak equiva-
lences are the homotopy equivalences. This means that studying categories with equiva-
lences is strictly more powerful than studying categories with homotopies. On the other
hand homotopies are more intuitive and easier to reason.

5.23. If A is an ordinary category and C is an homotopical category then the functor cat-
egory Fun(A,C) inherits a homotopical structure from C where an natural transformation
θ : F ⇒ G is a weak equivalence if for all a ∈ A the component θa : F(a) → G(a) is a weak
equivalence.

5.24. Recall that in an ordinary category the limit of an functor F : A → C represents
Nat(∆(−), F). Here ∆ sends an object C ∈ C to the constant functor. Dually the colimit
represents Nat(F, ∆(−)). We can summarize this situation by the adjoint triple

CA C

colim

⊥

lim

⊥
∆

5.25. The functor ∆ is homotopical however the adjoints colim and lim definitely do not
have to be homotopical. To illustrate this we show an example in Topq involving colim.
Consider the following diagrams where the right hand diagram is obtained after replacing
by weak equivalence D2 → 1.
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S1 1

1 1
p

S1 D2

D2 S2

i

i
p

Now clearly the pushouts of these diagrams as displayed are not weakly equivalent, it
is actually the right hand diagram that shows the correct homotopical colimit, which we
define in the next chapter. A similar example displayed below shows that the correct homo-
topical colimit (displayed on the right) of a diagram involving discrete topological spaces
(displayed on the left) no longer needs to be discrete!

1 t 1 1

1 1
p

∂I I

I S1

i

i
p

5.3 Derived functors and deformations

5.26. Given a functor F : C → D and a functor i : C → C′ a right extensionright extension of F along i
is a functor F̃ : C′ → D equipped with an natural transformation F̃i ⇒ F. Similarly an left
extension comes with an natural transformation the other way.

C D

C′

F

i
F̃

C D

C′

F

i Rani F

F̃

There is an obvious notion of an universal right extension which is called the right Kan
extension

right Kan
extension RaniF of F along i. This is an extension such that the natural transformation
of any other extension F̃i ⇒ F correspond bijectively with natural transformations F̃ ⇒
RaniF. There is an obvious dual notion for left Kan extension, for more information see
[Rie19].

5.27. Consider the context of an ordinary functor between two homotopical categories now
if F fails to be homotopical it does not descend to a functor between the homotopy cat-
egories. But we might attempt to approximate F using a left or right kan extension as
follows. These approximation are called the total left

derived functor
total left derived functor LF and total right

derived functor RF. These are defined as follows

LF = RanγC
γDF, RF = LanγC

γDF

Note here the unfortunate switch in terminology: the total left derived functor is given by
the right kan extension and vice versa.
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C D

Ho(C) Ho(D)

F

⇑γC γD

LF

C D

Ho(C) Ho(D)

F

⇓γC γD

RF

5.28. In good situations the total derived functor lifts to an homotopical functor LF : C→
D with a natural transformation LF ⇒ F such that the induced map between the homotopy
categories is the total derived functor. Such a lift is called the left/right

derived functor
left/right derived functor.

C D

Ho(C) Ho(D)

F

LF

⇑

γC γD

LF

5.29. We can now make precise what we meant by homotopy (co)limit in 5.25. The homo-
topical colimit hocolim is a left derived functor for lim and the homotopical limit holim is
the right derived functor for colim. For more info on homotopical (co)limits and how to
compute them, see [Rie19].

5.30. A left
deformation

left deformation on an homotopical category C is an endofunctor Q and a natural
weak equivalence q : Q ⇒ id. We say that (Q, q) is a left deformation for a functor F :
C→ D between homotopical categories if FQ is an left derived functor with Fq : FQ ⇒ F.
Dually an right deformation is an endofunctor R : C → C with natural weak equivalence
r : id⇒ R.

5.31. An deformable
adjunction

deformable adjunction between homotopical categories is an adjunction F a G
such that both functors are deformable. Then by [Dwy+05, 44.2] the the induced func-
tors LF ` RG between the homotopical categories are also an adjunction. In particular
when this induced adjunction is an equivalence we will say that C and D are homotopi-
cally equivalent.

5.4 Model categories

5.32. The relation between a C with weak equivalences and Ho(C) is much more hairy than
the relation between a category with homotopy relation and its naive homotopy category.
Consider for example the category C displayed below left and the category MN freely
generated by the graph displayed below right.

L R
s

f

Ms

There is a functor F such that F(L) = F(R) = M, F( f ) = idM and F(s) = s, then the kernel
of this defines a homotopical structure on C such that {idL, f , idR} are weak equivalences. In
fact F : C→ MN is isomorphic to γ : C→ Ho(C). Now there are maps, such as sn for n > 1
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in MN that have no preimage in C. This does not happen for categories D with homotopy
relation ∼: every isomorphism class of maps [ f ] in hD clearly has some representative in
D.

The structure of a model category can be seen as a way to partially recover a compatible
homotopy relation between some of the objects in Ho(C).

5.33. A model structuremodel structure on a category C with weak equivalences W consists of two wide
subcategories Fib and Cof of C such that the pairs (Cof∩W,Fib) and (Cof,Fib∩W) are both
weak factorization systems.

5.34. Some terminology

• A map p : E→ B in Fib is called a fibration

• If p is also in W then it is a trivial/acyclic fibration

• A map i : A→ X in Cof is called a cofibration

• If i is also in W then it is a trivial/acyclic cofibration

The model category axioms imply that, for every square displayed below left such that i is
a cofibration and p is a fibration, that if either i or p is in W there exists a diagonal filler.

A E

X B

i p

A ·

· B

f

ĩ

i p

p̃

Moreover every morphism f : A→ B in C displayed above right factors in two ways such
that: ĩ is an trivial cofibration; p is a fibration; i is a cofibration; p̃ is a trivial fibration.

5.35. It should be noted that model structures are not unique for a given homotopical
category, nor do they have to exist.

5.36. A model categorymodel category is a complete and cocomplete category C together with a model
structure on C.

5.37. The category with homotopies Toph is a model category where Fib are the Hurewicz
fibrations and Cof are the (closed) Hurewicz cofibrations. When we talk about Toph we will
always use this model structure which is called the Hurewicz

model structure
Hurewicz model structure on Top.

The homotopical category Topq is a model category where Fib are the Serre fibrations and
Cof are the Serre cofibrations. When we talk about Topq we will always use this model
structure which is called the Quillen model

structure
Quillen model structure on Top.

5.38. If we examine the situation in Toph we see that homotopies between f , g : A→ B are
represented by a map H : I × A → B such that H(0,−) = f and H(1,−) = g. In other
words we have a commutative diagram (where ∇ is the fold map [id, id]).
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A + A B

A I × A

∇

f+g

∂0+∂1 H

p

What is to notice here is that p is a homotopy equivalence and ∂0 + ∂1 is a cofibration
(closed embedding) with respect to our model structure. This suggests that I × A is a kind
of nice replacement (equivalent by p) of A + A such that we can represent the homotopy
between f and g.

Abstracting the details away we get the following

5.39. A cylindercylinder Cyl(A) for A is a factorization of the fold map∇ as a cofibration followed

by a weak equivalence A + A Cyl(A) Ai ∼ . Dually a path objectpath object Path(B) for B is factor-

ization of the diagonal ∆ as a weak equivalence followed by a fibration B Path(B) B× B∼ p
.

The model theory axioms always ensure that cylinders and path objects exist, we then even
have that the weak equivalences are trivial fibrations/cofibrations.

An left homotopy between f , g : A→ B in a model category C is a factorization through the
cylinder object of A as displayed below left. Dually a right homotopy between f , g : A→ B
is a factorization through the path object of B displayed below right.

A + A B

Cyl(A)

f+g

i H

A B× B

Path(A)

f×g

H p

Warning: left homotopy or right homotopy is not necessarily an equivalence relation on
Hom(A, B)

5.40. An object A is fibrant,
cofibrant and
bifibrant
objects

cofibrant if the unique map from the initial object 0→ A is cofibration.
An object A is called fibrant if the unique map to the terminal object A → 1 is a fibration.
An object is called bifibrant if it is both fibrant and cofibrant.

A R(A)

1

!

∼ 0 Q(A)

A

! ∼

5.41. The model category axioms ensure that every object A in a model category has an
weakly equivalent fibrant object R(A) and a weakly equivalent cofibrant Q(A) as dis-
played above. Such objects are called fi-

brant/cofibrant
replacements

fibrant/cofibrant replacements for A. Chain these
operations even yields an bifibrant object A, as can be easily checked.

5.42. If the factorization systems are functorial we even obtain fi-
brant/cofibrant
replacement
functors

fibrant/cofibrant replace-
ment functors R, Q : C→ C equipped with natural weak equivalences id⇒ Q and R⇒ id.
The bifrant objects RQ(A) and QR(A) are not necessarily the same, although they are of
course equivalent.
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5.43. When A is cofibrant then left homotopy is an equivalence relation on Hom(A, B) for
all B. Dually, right homotopy is an equivalence relation when B is a fibrant. By a theorem
of Quillen see [Qui67] left and right homotopy coincide which we will write as ∼ when A
is cofibrant and B is fibrant. Quillen also showed that in this situation

HomHo(C)(A, B) = Hom(A, B)/ ∼

5.44. Since weak equivalences are isomorphisms in the homotopy category of C and we
actually get that

HomHo(C)(X, Y) = Hom(QX, RY)/ ∼= Hom(RQX, QRY)/ ∼

If we write C for the full subcategory of bifibrant objects then the above shows that Ho(C) =
hC where we equip C with the homotopy relation ∼.

5.45. In Topq the bifibrant objects are given by the retracts of CW-complexes, moreover the
homotopy relation produced by cylinders and path objects on bifibrant objects coincides
with the homotopy relation of Toph. This means that the homotopy category of Topq is
equivalent to the full subcategory of retracts of CW-complexes with the naive homotopy
relation.

5.5 Model structure on Cat

In the category of categories Cat is a category I called the walking
isomorphism

walking isomorphism category
containing two objects 0 and 1 and an isomorphism between them. It is named so because
the functors I→ C correspond bijectively with the isomorphisms of C. This functor serves
as an interval object and generates a homotopy relation on Cat in the following sense. Two
parallel functors F, G : C → D are homotopic if there is a functor H : I × C → D such that
H(0,−) = F(−) and H(1,−) = G(−), such a functor is precisely an natural isomorphism
between F and G. A natural isomorphism can equivalently be presented by a map C →
Fun(I,D) and this makes it clear that this is indeed a homotopy relation. The homotopy
equivalences are then precisely the categorical equivalences.

The homotopical category Cat can be equipped with a model structure in precisely one
way1. This model structure is cofibrantly generated as follows. The generating trivial
cofibrations is the endpoint inclusion i : {0} ↪→ I, a map having lifts against this inclusion
are the isofibrationsisofibrations. More explicitly, an functor p : E → B is an isofibration if for each
e ∈ E and isomorphism f : p(e) ∼= b there is an e′ ∈ E and f ′ : e ∼= e′ such tat p( f ′) = f .
This is displayed in the lifting square below left.

{1} E

I B

i

e

p

f

f ′

P · ·

2 · ·
i

1https://sbseminar.wordpress.com/2012/11/16/the-canonical-model-structure-on-cat/
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Recall that 0 is the category with no arrows, 1 is the category with single object and identity
morphism and 2 is the category with two arrows and a single non identity arrow between
them. There is a (unique) functor ! : 0 → 1, a map has the right lifting property against !
iff it is surjective on objects. Consider the functor ∂ : 1 + 1 → 2 which includes into the
endpoints of 2, another functor has the right lifting property against ∂ iff it is full. Finally
consider the category P = 2+∂

∂2 the category with two parallel arrows and the functor
s : P → 2 identifying the parallel arrows depicted above right. A functor has the right
lifting property against s iff it is faithful. These three maps together form the generating
cofibrations, this means that a trivial fibration in Cat are precisely the full and faithful maps
which are surjective on objects.
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Chapter 6

Simplicial sets

6.1. Let the simplex
category

simplex category ∆ be (the skeleton of) the full subcategory of Cat spanned
by the non empty finite linear orders. Concretely the category ∆ consists of linear orders
[n] = {0 < ... < n} for each n > 0 and all order preserving maps between them. There are
some important variations on the simplex category

• Let the augmented
simplex
category

augmented simplex category ∆+ be the full subcategory of Cat spanned by all
finite linear orders. This is just ∆ with an additional initial object [−1] = ∅ the empty
linear order.

• For any n > 1 let the n-truncated
simplex
category

n-truncated simplex category ∆≤n be the full subcategory of ∆

spanned by the objects [i] with i ≤ n.

The (augmented) simplex category inherits the orthogonal (epi, mono) factorization system
from sets yielding two full subcategories (∆+)epi and (∆+)mono. These two subcategories,
and hence ∆+ it self are generated by the maps

• The face maps
{

δi
n : [n− 1]→ [n] | 0 ≤ i ≤ n

}
where δi

n is injective and leaves i out
of its image.

• The degeneracy maps
{

σi
n : [n + 1]→ [n] | 0 ≤ i ≤ n

}
where σi

n is surjective and re-
peats the i in its domain.

Similar remarks hold for ∆ itself and the n-truncated simplex categories. Drawing only
these generating maps the augmented simplex category is pictured as

[−1] [0] [1] [2] · · ·

An diagram X• : ∆op → C with shape ∆ is called a simplicial object in C. We then write
Xn for X•([n]). A diagram with shape ∆ is called a cosimplicial object. Similarly for
augmented (co)simplicial object, n-truncated (co)simplicial object, etc.

The presheaf category Psh(∆) of functors ∆op → Set is called the category of
simplicial sets

category of simplicial sets
and is also written sSet. The most important way to think about the category of simplicial
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sets is that it is the cocompletion of ∆, i.e. every simplicial set X ∈ sSet is obtained by gluing
together representable simplices y[n] which are also written as ∆[n]. The representables
∆[n] should be thought of as abstract oriented n-simplices as displayed below where the
faces/volumes should be imagined as filled in. The face and degeneracy maps induce
injections and surjections between these standard simplices.

0
0

1

1

0 2

1

3

0 2

For a subcategory i : ∆≤n ↪→ ∆ there is an map trn : sSet→ Psh(∆≤n) given by precomposi-
tion called the truncation map. This map has a left adjoint skn : Psh(∆≤n) → sSet obtained
by the following construction. We can consider the functor yi : ∆≤n → sSet which is a
functor into a cocomplete category sSet, by extensions by colimits we then get the adjoint
pair

Psh(∆≤n) sSet

skn

⊥
trn

This adjunction induces a functors which we will also call skn : sSet → sSet. This functor
forgets all the higher simplices. An simplicial set in the essential image of skn will be called
an n-truncated simplicial set.

The category of simplicial sets is an important middle ground between topological spaces
and categories as the following shows.

Spaces and simplicial sets

6.2. Define a functor ∆ → Top which sends [n] 7→ {x ∈ In | 0 ≤ x1 ≤ ... ≤ xn ≤ 1}
the standard n-simplex in Top where the face and degeneracy maps are the obvious ones.
Since Top is cocomplete we obtain an adjoint pair using extension by colimits:

sSet Top

|−|Top

⊥
Sing

The left adjoint | − |Top : sSet → Top is called the geometric realization functor and is ob-
tained by: 1) decomposing a simplicial set as a colimit of representables; 2) taking a stan-
dard simplex for every representable; 3) gluing the standard simplices together according
to the colimit presentation. The right adjoint Sing : Top→ Psh(∆) sends a topological space
to it singular simplicial complex which is obtained by probing a space with the standard
simplices. The image of the geometric realization functor are CW complexes, as should be
clear. Then standard homotopy theory shows that the counit εX : |SingX| → X is an weak
homotopy equivalence.
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6.3. The category sSet can be endowed with a homotopical structure where we let the weak
equivalences be those induced by the geometric realization functor | − |Top (which is then
homotopical by definition). This homotopical structure is called the Quillen homotopical
structure on simplicial sets and we will write it as sSetq.

6.4. Since the counit’s are weak homotopy equivalences the composite |Sing • | is also ho-
motopical, indeed suppose f is a weak equivalence then |Sing f | is a weak equivalence by
the two-out-of-three property (displayed below left). Then Sing f is already a weak equiv-
alence since otherwise |Sing f | would not be.

|SingX| |SingY|

X Y

εX

|Sing f |

εY

f

|Y| |Sing|Y||

|Y|

|ηY |

id ε|Y|

Now consider for any Y the unit map ηY : Y → Sing|Y|, by the induced homotopical
structure this map is a weak equivalence if |ηY| : |Y| → |Sing|Y|| is. The triangle law for
adjunctions gives the top right triangle and since id and the counit are weak equivalences
so is |ηY| by two-out-of-three.

6.5. This shows that the realization-singular adjunction between topological spaces and
simplicial sets is homotopical and moreover induces an equivalence on the level of homo-
topy categories.

sSetq Topq

Ho(sSetq) Ho(Topq)

γ

|−|

⊥
Sing

γ

⊥

6.6. There is a model structure on sSet compatible with the weak equivalences induced by
| − |Top, we will also write sSetq for this model structure. This model structure is cofibrantly
generated where

• The generating cofibrations are given by the boundary inclusions i : ∂∆n ↪→ ∆n
for all 0 ≤ n. Here ∂∆n is the subobject of ∆n induced by all the face maps into
δ•n : [n− 1]→ [n].

• The generating trivial cofibrations are given by the horn inclusions Λi
n ↪→ ∆n for

0 ≤ i ≤ n. Here a horn Λi
n is the union of the subobjects of ∆n induced by all but the

ith face maps δ•n : [n− 1]→ [n].

6.7. The image of the generating trivial cofibrations are precisely the boundary inclusions
of spheres-into-discs (up to isomorphism) as displayed below right. Suppose that f is a
Serre fibration, i.e. f has lifts against all spheres-into-discs. Then any lifting problem of
a generating cofibration in sSet into Sing( f ) transposes to a lifting problem in Top against
a sphere-into-disc inclusion for which we can transport the lift back along the adjunction.
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This shows that if f is a fibration so will Sing( f ) be a fibration.

|∂∆n| Sn−1

|∆n| Dn

∼

∼

|∂Λi
n| Dn−1

|∆n| Dn−1 × I

∼

∼

The generating cofibrations have a relation to the cylinder-of-disc inclusions as displayed
above right. Then a similar argument shows that if f is a trivial fibration then Sing( f ) is
also a trivial fibration.

This already shows that | − | ` Sing is a Quillen adjunction, indeed it is a Quillen equiva-
lence since the adjunction induces an equivalence on homotopy categories.

Categories and simplicial sets

6.8. Let ∆ ↪→ Cat be the inclusion into categories (recall that ∆ is just a subcategory of Cat).
Since Cat is cocomplete we obtain an categorical realization functor | − |Cat : sSet → Cat

sending an simplicial set S to a category |S|. The left adjoint of this functor is called the
nervenerve N : Cat→ sSet.

sSet Cat

|−|Cat

⊥
N

6.9. The nerve of category N(C) is a simplicial set where [n] 7→ Hom(∆[n],C) this means
that; N(C)0 are the objects of C; N(C)1 are the morphisms of C; N(C)2 are composable pairs
of C; and in general N(C)n are composable n-tuples of arrows in C.

6.10. The realization functor | − |Cat can profitably be understood as freely generating a
category from a simplicial set S where the points S0 are the objects of |S|, the 1-simplices
S1 generate the morphisms of |S|, and the 2-simplices S2 quotient the resulting category
by forcing the sides of S2 to become equal. In the case where S only has degenerate n-
simplices for n > 1 can nicely be compared to generating a category from a reflexive graph
as follows.

The category of reflective graphs rGraph is just the category Psh(∆≤1), in particular a reflec-
tive graph X ∈ rGraph is just a pair of sets X0 and X1 with reflexivity map r : X0 → X1
and source and target maps s, t : X1 → X0. The adjunctions between rGraph, Cat and sSet

assemble into a square as displayed below.

rGraph Psh(∆≤1)

Cat sSet

F a sk1 aU

N
⊥
|−|Cat

tr1
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In fact the subsquares of left (right) adjoints commute. By uniqueness of ajoints it is enough
to show that one of the squares commute. It should be clear that tr1 ◦ N yields precisely
the underlying reflexive graph of a category. From this we conclude that if a simplicial
set S is 1-truncated it’s realization in Cat corresponds to the free category generated by it’s
1-simplices.

For a general simplicial set S the geometric realization |S|Cat can be constructed by first
building the free category F(tr1(S)) on the 1-skeleton of S. Then there is homotopy relation
on F(tr1(S)) generated by the 2-simplices of S as follows. For each σ ∈ S2 with faces f , g, h
which we can consider in F(tr1(S)) we require g f ∼ h. Then |S| is the quotient of F(tr1(S))
by this equivalence relation.

6.11. The counit εC : |N(C)|Cat → C is the identity on objects map that sends an equivalence
class of composable arrows to their composite in C is an isomorphism of categories. The
unit of adjunction is not an equivalence in any reasonable sense, indeed it destroys all the
non degenerate n-simplices for n > 1. We improve this adjunction in 7.36.

The essential image of N consists of the simplicial sets can also be characterized by a lifting
property. Recall that a horn inclusion’s were the collection of maps Λi

n → ∆n for all 0 ≤
i ≤ n and n. For a nerve of a category C the unique map NC → ∆[0] has the unique right
lifting property against inner horns which we now define.

6.12. The inner hornsinner horns are maps Λi
n → ∆n for all 0 < i < n (notice the inequalities).

6.13. There is only one inner horn for n = 2 which is represented below left, and a lifting
problem against this horn is displayed below right.

·

· ·

·

· ·

Λ1[2] E

∆[2] B

f

p

When B = 1 and E = N(C) the map Λ1[2] → N(C) transposes to f : |Λ1[2]| → C, since
| − | is a left adjoint it preserves colimits so |Λ1[2]| ∼= 2 + 2 and f simply picks out a pair of
composable arrows. Since C is a category this pair has a composite which gives the desired
extension of f producing the diagonal filler. Since composites in a category are unique this
lift is also unique.
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Chapter 7

Topological, simplicial and quasi
categories

There is an alternative approach for doing homotopical mathematics which will eventually
lead to higher category theory. This is a refinement of the idea of categories with homo-
topies and builds on the homotopical categories Topq and sSet.

Recall that a category with homotopies consists of an ordinary category C with a homotopy
relation on each of the hom set Hom(A, B), compatible with composition. In other words
each hom is actually a setoid i.e. a set with an equivalence relation, and the categorical op-
erations such as composition are setoid morphisms. A category taking for which the hom
sets naturally have the structure of objects of another category E is called an E-enriched
category. The idea is to now to consider categories enriched in the homotopical categories
sSetq or Topq. This means that for each pair of objects X, Y we get a simplicial set or topo-
logical space of morphisms from A to B. Two morphisms in such a hom space can then be
declared homotopical if they are in the same path component.

We will begin making the above sketch precise by introducing the notion of an enriched
category, an variation on category theory where we replace Set with some other category
E .

7.1 Enriched categories

For now it is good to read the following definition with E = Set. For this case the reader
can verify it is equivalent to the ordinary definition of a (locally small) category. We will
show later how to vary E to obtain novel enriched categories.

7.1. A enriched
category

category enriched over E , or E-category, C consists of

• A collection X, Y, Z ∈ C of objects, written Obj(C).
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• For each pair of objects X, Y an hom-objecthom-object Hom(A, B) ∈ E

• For each object X a morphism 1X : ∗ → Hom(A, B) in E

• For each triple of objects X, Y, Z ∈ C there is a morphism ◦ : Hom(Y, Z)×Hom(X, Y)→
Hom(X, Z).

Subject to the categorified associativity and identity laws, i.e. the following squares com-
mute in E

Hom(X, Y)× 1 Hom(X, Y) 1× Hom(X, Y)

Hom(X, Y)× Hom(X, X) Hom(X, Y) Hom(Y, Y)× Hom(X, Y)

id×1X

∼= ∼=

1Y×id

◦ ◦

Hom(Z, W)× Hom(Y, Z)× Hom(X, Y) Hom(Z, W)× Hom(X, Z)

Hom(Y, W)× Hom(X, Y) Hom(X, W)

id×◦

◦×id ◦

◦

7.2. The category E in the above definition is called the base of enrichment and for the
above definition to make sense require that it is a symmetric monoidal category. A symmetric

monoidal
category

symmetric
monoidal category E is a category with an functor × : E × E → E and an object 1 ∈ E such
that there are specific isomorphisms

• 1× X ∼= X ∼= X× 1 for all X ∈ E , witnessing that 1 is a (weak) unit of ×.

• A× (B× C) ∼= (A× B)× C for all A, B, C ∈ E , witnessing that × is (weakly) associa-
tive.

• A× B ∼= B× A for all A, B ∈ E , witnessing that × is (weakly) symmetric.

7.3. Any category with finite products is symmetric monoidal with the binary product and
the terminal object. The added structure from the finite limits is that we get a diagonal
map ∆X : X → X × X and an augmentation map eX : X → 1 satisfying the coherence law
displayed.

X

1⊗ X X× X X⊗ 1

∆X

∼=

eX×idid×eX

∼=

7.4. Given a symmetric monoidal structure (C,⊗, 1), if the functor −⊗ X : C → C has a
right adjoint for all X we say that the monoidal structure of C is closed

monoidal
closed. In this case the right

adjoint is written [X,−] such that Hom(X×Y, Z) ∼= Hom(X, [X, Y]) natural in X, Y, Z ∈ C.

7.5. If a category C has a closed symmetric monoidal structure it is enriched over itself
with Hom(X, Y) := [X, Y] (see [Rie19, Chapter 3]). For example the enriched composition
is defined to be the transposition of the map displayed below

[Y, Z]⊗ [X, Y]⊗ X [Y, Z]⊗Y Zid⊗ε ε

78



The categories Top and sSet are both cartesian closed and are thus self enriched. The conve-
nient category of spaces Top was chosen to be cartesian closed mostly for this reason.

7.6. Consider an Top-enriched category C and two parallel morphisms f , g : X → Y in C.
These two arrows are represented by two points p fq, pgq : 1 → Hom(Y, X) in Top. This
allows us to define an homotopyhomotopy between f and g to be an path H : I → Hom(Y, X) such
that H(0) = p fq and H(1) = pgq. The same definition works in sSet where we use ∆[1] as
interval. The diagram below left depicts this situation for both sSet and Top enrichment.

1

I Hom(X, Y)

1

i0

p fq

H

i1

pgq

X

I · X Y

X

i0

f

H

i1

g

Y

X Y I

Y

H

f

g

p0

p1

7.7. In the case above where C = Top (or C = sSet) the object on the right is just the
internal Hom space [X, Y], by the Hom-adjunction we get the ‘left homotopy’ diagram in
the middle. Transposing to the other variable in the product produces the ‘right homotopy’
diagram on the right. Thus we see that this notion of homotopy in Top agrees with the
Hurewicz homotopical structure Toph.

7.8. The nice thing about the approach above is that we immediately get higher homotopies
(as homotopies between homotopies) for free. We want to find a way to internally represent
left/right homotopies for a general E-enriched category C, not just when is self enriched.
For this we require a way to ‘tensor’ and ‘cotensor’ an object X ∈ C with an object E ∈ E .

7.9. Suppose that E is an closed monoidal category (such that it is self enriched) then an
E-enriched category C is

• tensoredtensored or copowered if there is an object E · X ∈ E such that

HomC(E · X, Y) ∼= HomE (E, HomC(X, Y))

• cotensoredcotensored or powered if there is an object YE such that

HomC(X, YE) ∼= HomE (E, HomC(X, Y))

for each X, Y ∈ C and E ∈ E .

7.10. Any symmetric monoidally closed category is enriched, tensored and cotensored over
itself. Here we take the internal hom to define the tensor and cotensor.

7.11. Any locally small category C with small coproducts is tensored over sets, any cate-
gory with small products is tensored over sets. In this case we have for E ∈ Set and X ∈ C:

E · X :=
⊔
E

X, XE :=
l

E

X

7.12. An monoidal
model category

monoidal model category is an monoidal category C with a model structure such
that
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• The category C is complete and cocomplete

• the monoidal structure is compatible with the model structure [Lur09, A.3.1.1].

• the monoidal structure is closed and symmetric.

7.13. Both Topq and sSetq are monoidal model categories with the cartesian closed structure.
Moreover the homotopical equivalence of 6.2 given by geometric realization | − | and Sing
preserves the monoidal structure. The right adjoint Sing preserves products automatically,
for geometric realization this is a non trivial theorem (see [HM18, 2.6]).

7.14. Consider an E-category C where E is an monoidal model category with localization
map [−] : E → Ho(E), then the categorical structure is compatible with the model structure
and so we can define it’s homotopy category hC where

HomhC(A, B) := [Hom(A, B)]

7.15. The category of E-categories CatE where E is an monoidal model category inherits an
homotopical structure in the following way. A functor F : C → D is an weak equivalence
if F( f ) : HomC(A, B) → HomD(F(A), F(B)) is a weak equivalences for each f , A and B.
We will speak of the category of homotopically E-categories when we mean the category
of E-categories with this homotopical structure.

7.2 Homotopy coherent diagrams

Suppose we have an ordinary category A and a homotopical category C. Then an diagram
of shape A in C is a functor X : A→ C. These functors assemble into a category of functors
Fun(A,C). In homotopical spirit we should be free to replace objects X(i) ∈ C in the dia-
gram X : A→ C with weakly equivalent objects Y(i). Such a replacement defines a natural
weak equivalence f : X ⇒ Y in Fun(A,C). These ’pointwise’ weak equivalences define
the class of weak equivalences of the category Fun(A,C). This is the case because these are
precisely the natural transformations that become natural isomorphisms after postcompo-
sition with γ : C→ Ho(C). By localization we can form Ho(Fun(I,C)) and attempt to study
invariant diagrams of shape A.

When C is an simplical category with its canonically induced homotopical structure there is
a very pleasing description of the homotopy classes of Ho(Fun(I,C)). There is a simplicial
category CA with the property that each F ∈ Ho(Fun(A,C)) is represented by an ordinary
simplical functor CA → C. The maps Fun(CA,C) are called the homotopy

coherent
diagrams

homotopy coherent dia-
grams of shape A in C.

7.16. Recall that there is a adjunction between Cat and rGraph, the category of reflective
graphs. This adjunction defines a comonad T = FU on Cat which first sends a category
to its underlying reflective graph and then produces the free category on this graph. In
general one obtains from a comonad (T, µ, ε) on C its comonadic

resolution
functor

comonadic resolution functor resT :
C → Fun(∆op,C). An object A is sent to the simplicial object resT(A) : ∆op → C such that
[n] 7→ Tn+1(A), the face maps are then derived from the comultiplication maps and the
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degeneracy maps are derived from the counit maps as displayed below. This simplicial
object can in fact be augmented such that [−1] 7→ A, as also displayed.

A T(A) T2(A) T3(A) · · ·ε µ
Tε

εT Tε

εT
T2ε

TεT

εT2

7.17. When the comonad arises out of a free-forgetful adjunction F ` U the simplicial object
resFU(A) is called the free resolutionfree resolution of A. For the adjunction between Cat and rGraph the
category of reflective graphs write C := resT : Cat→ sCat for resulting resolution functor.

For a category A the free resolution CA : ∆ → Cat is a cosimplicial object in Cat. In fact,
since for every n we have Obj(CAn) = Obj(I), CA is also a simplicial category in the sense
that it is a category enriched in simplicial sets. This means that CA is presented by a set
of objects and for every n there is a category of n-arrows CAn = (FU)n+1 A which consists
of strings of composable arrows enclosed in sets of parenthesis with depth n. The counit
maps then remove parenthesis by evaluation while comultiplication adds parenthesis by
enclosing composed arrows.

7.18. Consider arrows f , g, g f in the category A. Then in CA0 we find arrows such as ( f ),
(g), (g f ), but also (g) ◦ ( f ). Clearly there should be some relation between (g) ◦ ( f ) and
(g f ) if the unaugmented CA is to faithfully encode A. The relation between (g)( f ) and (g f )
is witnessed by ((g)( f )) ∈ CA2 which, as the reader can verify, has exactly (g)( f ) and (g f )
as faces. One should think of the higher arrows in CA as homotopies relating the lower
arrows.

The category A can also be considered as a constant simplicial category in the sense that
Hom(A, B)n = Hom(A, B) and the face/degeneracy maps are all identities. This corre-
sponds to a situation where the n-simplices of Hom(A, B) are just the degenerated ordinary
arrows. The category A and CA are weakly equivalent objects in sCat, the category of sim-
plicial categories. This homotopical category inherits its structure from simplicial sets by
saying that a functor F : A → B is a weak equivalence in sCat if it induces a weak equiv-
alence for the hom-spaces. This is the case if the augmented simplicial object displayed
above admits extra degeneracy maps s−1 : A → T(A), which are sections to the top face
maps displayed above by [Mey84, Ch. 6].

7.19. The free resolution of a category CA provides a ‘thickened up’ version of A. It is in
fact a cofibrant replacement for A in the model structure on the Bergner model structure
of 7.31. In practice this means that composition has become ’homotopical’ in the sense
that a pair of composable morphisms f , g ∈ A which had to satisfy strict composition in
A are now represented by ( f ), (g), (g f ) ∈ CA1. The strict composition is then replaced by
a the 2-arrow (( f )(g)) with faces ( f )(g) and ( f g) which witnesses the composition. This
makes it such that we can be more flexible when construction a simplicial functor CA→ C.
No longer is there strict composition for the morphisms arising from A, instead requiring
composition to be witnessed by a simplex (i.e. homotopy) in C.

7.20. Suppose we have an homotopical category C, then it is in general not the case that
Fun(A, Ho(C)) is equivalent to Ho(Fun(A,C)) for the natural weak equivalence homotopy
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structure, defined above.

7.21. To give an example showing that these categories are not equivalent we exhibit an
functor F : C → Ho(Top) which can not be lifted to an homotopical functor into Top. For
this the reader needs to know that there is a map p : S3 → S2 called the Hopf fibration
which is a fibre bundle with fibers S1. This means that if we pick a basepoint in S2 then the
fiber over in S3 is S1 as displayed in the pullback below.

S1 S3

∗ S2

i

p p

∗

Expanding the diagram with an automorphism n : S1 → S1 of degree n we obtain a di-
agram which commutes in hTop displayed below on the right. Indeed in ∼ i because all
circles in S3 are nullhomotopic and the rest of the diagram was already commutative in
Top.

S1 S3

S1 S2

i

n
∗

p
i

∗

S1

S1 S3

∗ S2

n

i

i

p p

∗

Now suppose that the diagram on the left is a homotopy coherent diagram; then we have
a homotopy α : in ∼ i such that pα : pin ∼ pi is 2-homotopic to the constant homotopy.
Since p is a fiber bundle we can lift this homotopy to obtain a homotopy β : in ∼ i such
that pβ is the constant homotopy at the basepoint. The homotopy β shows that the map n
is obtained from the universal property of the homotopy pullback, but then n ∼ id which
only happens for n = 1.

7.22. In the category of categories Cat natural transformations between functors is repre-
sented using the directed interval [1]. A natural transformation between F, G : C → D
is represented by a functor C× [1] → D. This suggests a natural extension to homotopy
coherent functors.

7.23. An homotopy
coherent
natural
transformation

homotopy coherent natural transformation between homotopy coherent dia-
grams F, G : A → C (where C is a simplicial category) is given by an homotopy coherent
diagram ∆[1]× A→ C such that the following diagram commutes

CA

C∆[1]× A C

CA

FCi0

G
Ci1
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7.24. The collection of ordinary functors Fun(A,C) assembles into a category since natural
transformation can be uniquely composed. Two natural transformations α, β : [1]×A→ C
yield an unique [2]× A→ C; this correspond by the cartesian closed structure to a functor
[2] → Fun(A,C) or a triangle in Fun(A,C); two faces correspond to α and β and the third
face is the composite. Since this extension is unique it yields a composition rule and hence
turns Fun(A,C) into a category.

Unfortunately there is no unique composite in the case for homotopy coherent functors.
This is essentially because composition of homotopies is not unique. Instead we have to
take all possible paths [n] into account to reveal the structure of homotopy coherent natural
transformations.

7.25. For any category A and simplicial category C let Coh(A,C) denote the simplicial set
of homotopy coherent diagrams of shape A× [n] for n ≥ 0. This means that

• The 0-simplices Coh(A,C)0 are homotopy coherent diagrams of shape A in C.

• The 1-simplices Coh(A,C)1 are homotopy coherent natural transformations.

7.26. Suppose C is a Kan-complex enriched category. In this case Coh(A,C) has the right
lifting property against inner horns (see 6.12). In other words, for all 0 < i < n the follow-
ing lifts exist

Λi[n] Coh(A,C)

∆[n]

see [Rie18].

7.3 ∞-categories

Higher categories generalize the notion of an ordinary category in that we add higher
morphisms between morphisms, which are then themselves subject to be connected with
higher morphisms and so on. Why would one want to do something like this? It turns out
that one often naturally encounters categories for which the hom sets are themselves cate-
gories in their own right. This means that parallel morphisms in our category are objects
in the hom category and can potentially be connected by a morphism.

The paradigmatic example is the category of categories Cat itself: the hom sets are the
functor categories Fun(A,B). We can try to axiomatize the properties of Cat to obtain the
notion of a strict 2-category.

7.27. An strict 2-categorystrict 2-category C is a category enriched in Cat.

The collection of all strict 2-categories assemble into a category and we can then define
a strict 3-category to be a category enriched in strict 2-categories. In this fashion we can
define strict n-categories for all n ≥ 1.
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A problem the definition of a strict 2-category is that laws involving 1-morphisms are too
strict. Indeed, if parallel 1-morphisms f , g : A→ B are objects of a category Hom(A, B) then
equality between such morphisms should be isomorphism in the category Hom(A, B).

The proper definition of a n-category is called a weak n-category, for n = 2 it is also called
an bicategory as defined by Benabou [Bén67]. It can be thought of as an explicit description
of categories weakly enriched in Cat, i.e. we use the standard homotopical structure on Cat.
The full axiomatization of a bicategory is already involved and this only gets worse when
ascending the ladder of (weak) n-categories for higher n.

In the limiting case we speak of an ω-category. This is an category with n-morphisms for
all n ≥ 0 such that the structure at level n is coherent only up to equivalence at level (n+ 1)
all the way up. This is stated imprecisely, and it turns out that making this precise requires
a lot of work.

Luck has it that there is already one ω-category that everyone is familiar with. To the space
X we can assign an ω-category πX in the following way. The objects of πX are the points
of X. Then 1-morphisms between points x, y are given by paths [0, 1] → X with endpoints
x and y. The 2-morphisms are given by homotopies between such paths, 3-morphisms by
homotopies between homotopies and so on.

This ω-category is not strict: there is no way to pick a composition of paths that is strictly
associative. Indeed if we have composable paths f , g represented by morphisms f , g : I →
X we could define the composite path g f : x → z to be given by

f g : t 7→

 f (2t) if t < 1
2

g(2t− 1) if t ≥ 1
2

But this composition is not associate, the composites h(g f ) and (hg) f behave much differ-
ently.

The ∞-categories πX for topological spaces X are actually instances of ∞-groupoids∞-groupoids, these
are ∞-categories such that all n-morphisms are invertible. Without properly defining yet
what an ∞-category is we already have a class of objects modeling a special case. The idea
of the next chapter is to take the ∞-groupoids modeled by spaces as a starting point for
defining proper (∞, 1)-categories.

If we only care about the ∞-groupoid presented by a space it makes sense to consider
Topq with the Quillen model structure. Indeed two categories are weakly equivalent when
they present the same ∞-groupoid. This is because the ∞-groupoid encodes all the higher
homotopy groups at every basepoint of X.

A priori it is not clear whether every ∞-groupoid is modeled by a space, the assertion that
this is the case is Grothendiecks homotopy

hypothesis
homotopy hypothesis. More formally it asserts that ∞-

groupoids are equivalent to topological spaces up to weak homotopy equivalence. For us
this hypothesis will be a definition.

An ∞-groupoid should be an ω-category such that all n-morphisms for n > 0 are invert-
ible. It is useful to classify higher categories by the level at which all higher arrows are
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invertible. Let an (∞, m)-category be an ω-category such that all n-morphisms for n > m
are invertible. Since ω-categories are not properly defined this definition should be used
more as an informal guide.

Our goal this section will be to introduce some models of (∞, 1)-categories which we will
just call ∞-categories. Following the ideas presented above, i.e. that

• higher categories can be obtained by enriching categories in lower categories;

• and spaces up to weak equivalence Topq serves as a model for ∞-groupoids;

lead to a natural suggestion for such an model.

7.28. An model of ∞-categories is given by the homotopical category of topologically en-
riched categories. This are the Top-enriched categories which we will call topological

categories
topological cat-

egories equipped with the homotopical structure where a functor F : C → D between
topological categories is an equivalence if it is an weak equivalence on all the hom sets, as
defined in 7.15. The topological categories with this homotopical structure will be written
as tCatb.

7.29. The above definition is perhaps the most intuitive definition of an ∞-category. How-
ever it is rather difficult to work with in practice. This means we will look for different
models of ∞−categories.

7.30. The adjunction between Top and sSet descends to Top-categories and sSet-categories
because Sing and N both preserve finite limits (i.e. the monoidal structure in question).
Indeed if we have an Top-category we obtain an sSet-category by applying Sing to all the
hom spaces and vice versa.

7.31. Another model of ∞-categories is given by the homotopical category of simplicialy
enriched categories i.e. sSet-enriched categories, we will call such categories simplicial

categories
simplicial

categories. This category is also given the homotopical structure derived from sSetq in a
similar way to tCatb above. This homotopical structure is called the Bergner structure and
we will write it as sCatb. Bergner extended this model structure to an full model structure
in [Ber04].

7.32. The homotopical equivalence between sSetq and Topq from 6.2

sSetq Topq

|−|Top

⊥

Sing

induces an adjoint equivalence between simplicial categories and topological categories
given by applying Sing/| − |Top to every hom object.

7.33. The above adjoint homotopical equivalence between topological categories and sim-
plicial categories ensures that we can replace a topological category C with an equivalent
C′ enriched in CW-complexes by setting HomC′(X, Y) = |Sing HomC(X, Y)|. Analogously,
we take every simplicial category to be enriched in Kan complexes.
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7.34. Our last model of ∞-categories will be quasi-categories. These are simplicial sets
having the (weak) lifting property against the inner horns from 6.12. This means that a
simplicial set C is an quasi-category if for all n and 0 < i < n and any map f there is a
dashed lift

Λi[n] C

∆[n]

f

7.35. The adjunction between categories and simplicial sets of 6.8 shows that categories
can be faithfully encoded as certain simplicial sets. We saw that the essential image of the
nerve N : Cat → sSet can be characterized as those simplicial sets enjoying a unique right
lifting property against the inner horns from 6.12.

7.36. The idea is to upgrade the nerve-realization adjunction between Cat and sSet to be
defined on sCat. We apply extension by colimits to the functor ∆ → sCat given by the map
[n] 7→ C([n]) where C is the free resolution of the category [n]. We will call this extension
C : sSet → sCat. This is potentially ambiguous but we will show that the difference is
inconsequential in 7.37.

sSet sCat

C

⊥
N

The right adjoint is the homotopy
coherent nerve

homotopy coherent nerve and sends an simplicial category C to the
simplicial set N(C) : [n] 7→ Hom(C[n],C).

7.37. Our previous definition C : Cat → sCat agrees with C : sSet → sCat in the sense that the
diagram below commutes

Cat sCat

sSet

N

C

C

Proof. For more detail see [Rie18].

7.38. The map C allows us to transport the homotopical structure sCatb to sSet. The resulting
homotopical structure is the Joyal homotopical structure and is written as sSetj. Andre Joyal
extended this homotopical structure to a model structure (see [Lur09, 2.2.5]). An weak
equivalence in the Joyal homotopical structure on sSet is called an categorical

equivalence
categorical equivalence,

i.e. a map f : A → B of simplicial such that the induced map C f : CA → CB is an
equivalence in sCatb.

7.39. The idea is now to show that sSetj and tCatb are homotopically equivalent. For this
we use sCatb as an intermediate to obtain the composite adjunction as follows
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sSet sCat tCat

C

⊥
N

|−|

⊥
Sing

We will call the right adjoint the topological
nerve

topological nerve and write it as N. We get a composed
adjunction |C(−)] a N. A map f : S → T in sSet is a categorical equivalence if and only if
CF : CS → CT is an equivalence of simplicial categories if and only if |CF| : |CS| → |CT| is
an equivalence of topological categories. Then the unit of the adjunction is an equivalence
iff |C(η)| is an weak equivalence. By the triangle law the following commutes

|C(S)| |C(N(|C(S)|))|

|C(S)|
id

|C(ηS)|

ε|C(S)|

in which id is a weak equivalence. By two-out-of-three it is enough to show that the counit
maps are weak equivalences. For this we need the following result:

7.40. If C is an Kan enriched category, i.e. an simplicial category such that the mapping spaces are
all Kan complexes then

(i) the counit map MapC[NC](X, Y)→ MapC(X, Y) is a weak equivalence.

(ii) the nerve NC is an ∞-category.

Proof. For (i) see [Lur09, 2.2.0.1] and for (ii) see [Lur09, 1.1.5.10]

7.41. It is enough to see that for a topological category C the associated simplicial category
obtained by applying Sing to the hom spaces is a Kan enriched category. We therefore have
an equivalence between the two models of ∞-categories tCatb and sSetj. After we also take
the equivalence between tCatb and sCatb into account we obtain the following result.

(i) every topological category is equivalent to an CW-enriched category.

(ii) every simplicial set is categorically equivalent to an quasi-category.

(iii) every simplical category is equivalent to a Kan enriched category.

There are many different models of ∞-categories, luckily the above shows that they are all
equivalent. Nonetheless it is good to keep in mind different perspectives.
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Grothendieck topology, 42
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homotopical category, 63
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homotopy, 79
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homotopy coherent diagrams, 80
homotopy coherent natural

transformation, 82
homotopy coherent nerve, 86
homotopy equivalence, 54, 62
homotopy hypothesis, 84
homotopy relation, 61
Hurewicz cofibration, 58
Hurewicz fibration, 58
Hurewicz model structure, 68

idempotent monad, 21
induced homotopy relation, 62
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inner horns, 76
isofibrations, 70
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left/right derived functor, 67
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native homotopy category, 61
natural transformation, 11
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path, 56
path connected components, 56
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pointed space, 56
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Quillen model structure, 68
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sheaf, 42
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simple Grothendieck construction, 14
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simplicial categories, 85
site, 43
small (co)products, 19
small category, 8
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categories, 39
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symmetric monoidal category, 78

tensored, 79
terminal object, 14
topological categories, 85
topological nerve, 87
topos, 43, 48
topos of sheaves, 42
total left derived functor, 66
triangle laws, 15

two-out-of-six property, 64

universal colimits, 44
universality, 14

walking isomorphism, 70
weak (homotopy) equivalence, 57
weak equivalence, 63
Whitehead theorem, 58

Yoneda embedding, 14
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